

Soil – space under your feet

Ladislav Miko

Soil – space under your feet or...

Ladislav Miko

About soil services and soil biodiversity and why we need them?

Ladislav Miko

Soil is full of living creatures, each of them has a function

What they do in the soil??

...soil bugs ? itchy and scary staff.... !

But why?

...how we know them from movies

DEWalter 2011

© Solent News / Rex Features

Microflora: bacteria and fungi – "workers of decomposition Primary decomposers and mineralisers

Stand I I

Microfauna: "soil water fauna": Osmotrophs and fagotrophs Complex communities

Mesofauna: oribatid mites(Oribatida) macro- and microphytophagues, generalists, feeders, fragmenters, mixers, coprogenous humus

Mesofauna: springtails, symphylans, pauropods,...

Mesofauna: predatory mites

Macrofauna: soil engineers and technicians Fragmenting, mixing, distributing of organic matter Active burrowing of corridors Excrements - coprogenic humus

Macrofauna: soil predators Hunting – regulating of populations

IVERSI \square

派が行

Best insurance: functional redundance

Organic matter and ecosystem services of healthy / functioning soil

Interconnected world: decomposition channels and relations with plant roots

- Plant in soil environment interacts: selling metabolies for nutrients and water
- Two main energy channels of decomposition:
 - <u>Bacterial</u> more sensitive to conditions, but more universal, dependent on ecosytem engineers, within soil profile
 - <u>Fungal</u> better in extremes (drying, pH,...) closer to surface, longer distance connection ("pipelines", transport)
- Symbiotic relations (rhisobia, mykorhises)

Microbial gambit: role of soil organisms in decomposition of dead organic matter (DOM)

- Primary decomposers mineralisation, humification
- Soil fauna:
 - Consuming detritus and microflora – fragmenting, increase of surface available, mixing (perturbation)
 - Soil "ecosystm engineers" distribution of DOM in soil (earthworms, ants, beetles)
 - Secondary decomposition a coprogenic humification, nitrogen
 - Predators regulation

Soil structure: complex origin and maintenance, KEY FUNCTION!

- Result of decomposition and synzhesis at the same time
- Food (energy) source and living environment (mikrohabitat)
- Functional connection of living and nonliving component of soil
- Principal stabilisation element of the soil (physical, chemical, biological, immobilisation, nutrient and energy source
- DOM (and exudates) are the key
- Product of soil organism action, impossible to produce artificially

Why is soil structure so crucial: nutrients

Losses in biomass production

- Changing cultures changes productivity aboveground and belowground
- Changes differ in different habitats / landuses
- Significant impact in intensive, short-term cultures (farming)

Využití biomasy vyprodukované na poli (g/m2/rok)

Produced biomass is taken away, does not saty at the place – in the soil system

... Energy not just for humans ???

Intensive farming and organic matter in soils

- With increased intensity of farming Corg declines
- Decrease is more intensive in higher temperatures and lower humidity
- Therefore, this trend is even stregthened by change of climate
- Adaptation measures necessary to address the decline

How much human acquires??? - HANPP

Figure 1 Spatial distribution of the annual NPP resources required by the human population. As measured by a, HANPP and b, HANPP as a percentage of local NPP. Both maps use the intermediate estimate for HANPP and are in units of carbon.

Energy availability and biodiversity

- Food pyramid– trophic levels
- Energy transfer roughly 10%
- Decrease of not only number of species and complexity, but also abundance (numbers of individuals) – visible in intensive farming lands

Destruction (degradation) of structure – major problem

- Decomposition/destruction of soil structure is a permanent proces, as well as creation of the structure. Both islargely dependent on the action of soil organisms, and input of "raw materiál" and energy (all in dead organic matter and soil exudates
- Degradation of structure occurs, when DOM input is low and organisms switch to use "reserves" in long term stabilised organic matter in the soil (important component of soil aggregates)
- Results in release of small particles, easier migrating/transported by water, air,....

Erosion and compaction as a result of soil structure degradation

- Structure degadation –free movement of small fragments)
- Accumulation in subsoil compaction
- Easier surface erosion, easier wind erosione
- Much smaller soil slope angles are sufficient to start erosion events
- In microdepressions accumulation, capilarity salinisation

Soil structure and water

Differences in water retention and accesibility Prevention of floodings versus increased risk Temperature buffering, etc.

How healthy soil works?

- Important processes:
- Decomposition
- Nutrients
- Structure
- Water
- Biodiversity
- Carbon

Where is a problem?

- In almost all functions
- All works thanks systém geniality
- "best insurance":
- functional redundance
- "Switching" of food preferences
- BUT: structure degraded with subsequent effects

How to get them back?

Reintroduction options – reimigration: distances?

Adding organic matter may not be sufficient!

- Fauna destructed by intensity
- Recolonisation from surrounding habitats important
- Landscape structure essential
- Secondary effects: abovegrounmd biodiversity, ecosystem functions

Thank you for awareness!

