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Psychometrics and Economics

Psychometricians and econometricians don’t seem to interact much.

This has costs:
◮ Uses of measures should align with the way the measures are made,

and often they don’t.

◮ Measurement construction could profitably take more account of
eventual uses.

Jesse Rothstein (Berkeley) Test scores for secondary analysis June 2019 3 / 19



The kinds of analyses secondary users want to do

Focus on two simple linear regressions:

Dependent variable θi = Xiβ+ 󰂃i
Independent variable Yi = θiγ + Xiδ+ ui

◮ θi is the individual’s "true" achievement; we have only a measure θ̂i .
◮ Xi is a set of individual characteristics and/or policy variables
◮ Yi is some outcome – e.g., wages.

Set aside questions of causality and asymptotics – focus on
large-sample estimation of linear regressions, using θ̂i in place of θi .

What properties do we need θ̂i to have? What properties does it
have?
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Issues that users need to understand

Focus on what Braun & von Davier (2017) call "Large Scale
Assessment Surveys" (LSAS – e.g., NAEP, TIMSS, PISA)
◮ Designed primarily to provide group-level score distributions, at the

level of the country, state, or demographic group.
◮ Tests are short, with multiple test forms.
◮ Much effort goes into fixing the domain & coverage.
◮ Individual proficiency estimates are a side effect, not the goal.

Two types of issues:
1 Scaling is arbitrary.
2 Individual proficiency measures don’t fit economists’ mental categories

– they aren’t unbiased estimates with classical measurement error.
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Scaling: Achievement does not have an interval scale

Achievement is ordinal, not cardinal
◮ A test can say θbrian > θjesse , but the magnitude of θbrian − θjesse is

indeterminate – not just not identified, but not well defined.
◮ Any statement about θ that is not also true of θ2,

√
θ, ln θ, exp θ,

1(θ > c), or any other (weakly) monotonic transformation is a claim
both about true achievement and about the chosen scale.

This is a problem for linear regression!

Options:
◮ Rely on Z-scores to solve the problem.
◮ Rely on psychometrics / item response theory (IRT) to solve the

problem.
◮ Check robustness to transformations (though typically need to bound

the space).
◮ Scale to an external interval metric.

Tim Bond is the expert – see his talk!
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IRT doesn’t solve the scaling problem

Many tests are scaled using Item Response Theory (IRT)
◮ Let rij = 1 if student i gets item j right.
◮ An IRT model specifies Pr{rij = 1 | θi ,ψj}.
◮ The “3 parameter logistic” (3PL) IRT model:

Pr
󰁱
rij = 1 | θi ,ψj = {aj , bj , cj}

󰁲
= cj + (1 − cj)

eaj(θi−bj)

1 + eaj(θi−bj)

bj is difficulty, aj is discrimination, and cj is guessability.

This defines a scale. But observed responses are equally compatible
with any other scale θ̃ = g(θ) for g(·) (strictly) monotonic:

Pr
󰁱
rij = 1 | θ̃i ,ψj

󰁲
= cj + (1 − cj)

eaj(g−1(θ̃i)−bj)

1 + eaj(g−1(θ̃i)−bj)
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Proficiency measure: Goals and fit

Tests are short, so θi not identified.
Goals as analysts:

1 Characterization of f(θ) for pre-specified groups (nationalities, races).
2 Use θ̂ as a dependent variable
3 Use θ̂ as an independent variable

Many LSAS use "plausible values," random draws from the posterior
distribution of θ given item responses and student background
characteristics Z.
◮ PVs suffice but are unnecessary for goal 1.
◮ Suitability for goals 2 and 3 depends on the specific model, and on X

and Z.
◮ Accommodating goals 2 and 3 for all potential regression models

requires end users to model item responses directly.
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What is a "plausible value"?

Assume θi ∼ N
󰀓
µ(Zi),σ

2
θ(Zi)

󰀔

IRT model gives likelihood of observed responses IRT(Ri | θi).
By Bayes Rule, posterior distribution of θ is

p(θ | R ,Z) = p(R | θ,Z)p(θ | Z)
p(R | Z)

=
IRT(R | θ)φ(θ; µ(Z),σ2

θ(Z))󰁕
IRT(R | t)φ(t ; µ(Z),σ2

θ(Z))dt

Step 1: Estimate µ(Zi),σ
2
θ(Zi).

Step 2: Take K draws from posterior distributions of µ̂ and σ̂2
θ , then

from p(θ | R ,Z) given these.

Analogies: Empirical Bayes (for posterior mean), multiple imputation
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Comparing means to ends 1:
Characterizing p(θ | G) for pre-specified groups

Suppose we want to estimate only E[θ | G] and V(θ | G).

A noisy but unbiased estimate would identify E[θ | G] but overstate
V(θ | G).

PVs avoid bias, but add unnecessary steps.
◮ The estimates µ(Zi),σ

2
θ(Zi) are sufficient for the goal, if G ⊆ Z.

p(θ | G) =

󰁝
p(θ | Z)df(Z | G) =

󰁝
φ(θ; µ(Z),σ2

θ(Z))df(Z | G)

◮ Possible efficiency gains (akin to poststratification) from integrating
over p(Z | G).

◮ PVs don’t add anything once we have µ(Z),σ2
θ(Z).

We might also want nonparametric estimate of p(θ | G), but PVs rely
on parametric p(θ | Z).
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Comparing means to ends 2: Use θ as a dependent
variable

A noisy but unbiased estimate would be no problem here.

PVs can work, sometimes.
◮ PV has two components, θ̂PV

ik = θ̄EAP
i + uik

• θ̄EAP
i ≈ E[θ | Ri ,Zi] is the posterior mean.

• uik is a generated random number.

◮ Bias of regression of θ̂PV
ik on Xi is the same as with θ̄EAP

i
• Unbiased if X ⊆ Z (by iterated expectations); biased otherwise.

◮ Variance. Between-PV variation reflects two components
1 Estimation error in parameters of µ(Z)
2 Random draws from the distribution around estimated µ(Z).

• #2 reduces efficiency.
• #1 is important (e.g., consider X = Z case).
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Comparing means to ends 3: Use θ as an independent
variable

Y = θγ + Xδ+ u

A noisy but unbiased estimate θ̂ would attenuate γ and bias δ.

PVs can work, if regression is "congenial" with conditioning model
p(θ | Z).
◮ Roughly, PVs work if they recover joint distribution of {X ,Y , θ}.
◮ If {X ,Y } ⊆ Z, can estimate exactly one model p(Y | θ,X), but not

necessarily the one we want (Schofield et al., 2015).

Not a lot of good options here.
◮ With item response data, MESE model (Schofield 2012); see below.
◮ Unbiased estimate with known reliability, and EIV correction.
◮ Instrumental variables with two sub-test scores (unbiased estimates)
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What to do about it?

Additional reported statistics (esp. unconditionally unbiased
estimates, posterior means, and specific conditioning variables Z) can
help.

Other solutions involve releasing item responses, and relying on
researchers to build models for them.

Need more sophistication from researchers, as well as more support
from testmakers.
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Marginal Maximum Likelihood estimator - dependent
variable case

How to solve the dependent variable problem with item-level data.
Model:

1 Research model: θ = Xβ+ 󰂃, 󰂃 ∼ N(0,σ2) yields p(θ | X ; β,σ).
2 IRT model: IRT(Ri | θi ;ψ)

Observed data likelihood:

p(Ri |Xi) =

󰁝
p(Ri | θ,Xi)dp(θ | Xi; β,σ)

=

󰁝
IRT(Ri | θ;ψ)dp(θ | Xi; β,σ)

Solve by numerical integration, and maximize over {β,σψ}.
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Mixed Equations Structural Estimator - independent
variable case
How to solve the independent variable problem with item-level data
(Schofield et al. 2012)

Model:
◮ Research model: Y = θγ + Xδ+ u, u ∼ N(0,σ2) yields

pRM(Y | θ,X ; γ, δ,σ).
◮ IRT model: IRT(Ri | θi ,ψ)
◮ Custom conditioning model: θ | X ∼ N(Xπ, τ2) yields pCCM(θ | Xi).

Observed data likelihood:

p(Yi ,Ri | Xi) =

󰁝
p(Yi ,Ri , θ | Xi)p(θ | Xi)dθ

=

󰁝
p(Yi | Ri , θ,Xi)p(Ri | θ,Xi)p(θ | Xi)dθ

=

󰁝
pRM(Yi | θ,Xi)IRT(Ri | θ,ψ)pCCM(θ | Xi)dθ

Solve by numerical integration, and maximize over {γ, δ,σ, τ,ψ}.
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Conclusion

Economists can’t take our measures for granted.

We are used to thinking about classical measurement error.

Plausible values are not that!

Need to think more about aligning measures to analyses in education.

This requires changes in secondary analysts’ practice – though test
makers could help too.
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