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Motivation

Researchers across diverse disciplines in the social sciences rely on latent
variables as predictors of an outcome of interest.

Neal and Johnson (1996) show the large effect of human capital as
measured by the the Armed Forces Qualifying Test (AFQT) in
explaining the Black-white wage gap in the US

Heckman, Stixrud and Urzua, (2006) demonstrate the role of
cognitive abilities and non-cognitive personality traits (e.g.,
motivation and self-esteem), as key to later-life outcomes, including
labor market, health, and educational decisions.
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Motivation

A typical model to study the effect of latent variables on the outcomes of
interest is some form of a regression analysis:

Yi = β0 + β1θi + β2Zi + εi (1)

where

Yi = the outcome of interest for individual i (e.g., log wages)

θi = some latent construct(s) (e.g., human capital, cognitive ability)

Zi = some other covariates (e.g. race, years of labor force experience)

Non-linear regression analyses such as logistic, probit, and Poisson
regressions are also common.
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Problems with Errors in Variables

Thus, while most researchers want to estimate (1), they actually estimate:

Yi = β0 + β1θ̂i + β2Zi + εi (2)

Ignoring the measurement error leads to biased results (Fuller, 2006,
Stefanski, 2000).

The size and direction of the bias depends on the size and type of the
measurement error.
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The Mixed Effects Structural Equations Model (MESE)

When θ is observed and not measured with error, our likelihood is

f (Y |β, θ,Z )

But when θ is unobserved and X (a proxy test score or a set of item
responses) is observed, our likelihood becomes

f (Y ,X |β,Z ) (3)
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The Mixed Effects Structural Equations Model (MESE)

f (Y ,X |β,Z ) is a marginal distribution of a more general model in which
the unknown θ is integrated out.

Factoring by the Law of Total Probability,

f (Y ,X |β,Z ) =

∫
f (Y ,X , θ|Z , β)dθ (4)

=

∫
f (Y |X , θ,Z , β)f (X |θ,Z , β)f (θ|Z , β)dθ. (5)

implies a form of the Mixed Effects Structural Equations (MESE) Model
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Assumptions of MESE

Assume Y depends only on θ and Z ; Y ⊥⊥ X |θ such that X provides
no additional information about Y once θ is known.

Assume θ ⊥⊥ β|Z
Assume X ⊥⊥ Z , β|θ

These are based on good measurement practice and modern psychometric
theory.
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The Mixed Effects Structural Equations Model (MESE)

The MESE model suggests three general submodels (Richardson and Gilks,
1993):

Structural Model: Yi |Zi , θi , β ∼ f (Yi |θi ,Zi , β) (6)

Measurement Model: Xij |θi , γj ∼ f (Xij |θi , γj) (7)

Conditioning Model: θi |Zi , α ∼ f (θi |Zi , α) (8)

where γj are the parameters in the measurement model, α are the
parameters in the population model for θ|Z , and β, θ, Y , X , and Z are
defined as before.
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Submodels of MESE: The Measurement Model

Often is the item response theory (IRT) model underlying the design,
construction and scoring of the assessment

Flexible in using different IRT measurement models for different
latent constructs

Misspecification of the IRT model is relatively robust (see simulation
study in Schofield, 2008)
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IRT Models
3-PL model (for binary items)

Pj(θi ) ≡ P[Xij = 1] = cj +
1− cj

1 + exp[−aj(θi − bj)]
. (9)

Samejima’s (1969) graded response model (GRM) (for Likert-scale survey
responses and other ordinal items),

P∗
jk(θi ) ≡ P[Xijk ≥ xijk ] =

exp[aj(θi − bjk)]

1 + exp[aj(θi − bjk)]
. (10)

Xij is the response of individual i to item j ,

aj is the “discrimination” item parameter,

bj is the “difficulty” item parameter,

cj is the “guessing” item parameter, and

P∗
jk is the probability of individual i with proficiency θ scoring k or

above on item j .
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IRT Models: Measurement Error

IRT models provide a direct estimate of the measurement error for θ̂,
which is equivalent to the standard error of θ̂. Asymptotically,

SE (θi ) =
1√∑J

j=1 Ij(θi )
(11)

where Ij(θi ) is the Fisher information.

Schofield MESE



IRT Models: Measurement Error
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Figure: Measurement error for a typical 3-PL model by θ where a ∼ Unif (0, 2), b ∼ N(0, 1) and
c = 0 for all items.

SE (θ) varies for different values of θ: largest for those in the tails of the
distribution of θ and smallest for those in the middle.

SE (θ)→ 0 as J →∞.

SE (θ) unknown for all individuals. Using SE (θ̂) to correct for measurement
error leads to bias (Lockwood and McCaffrey, 2014).
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Submodels of MESE: The Conditioning Model

Often assumed to be multivariate normally distributed

Allows for possible differences in the distribution of θ across
subgroups of the sample

Is flexible in allowing the latent constructs to be associated with one
another conditional on the other covariates in the model.

Mis-specification in shape is robust (See Schofield, 2008 and Dresher,
2006)
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Submodels of MESE: The Conditioning Model

Which variables to include?

Many large scale assessments (e.g, NAEP and PISA) follow Mislevy
(1991) and condition on a huge set of background covariates to avoid
bias in population statistics estimated from the test.

Schofield et al. (2014) suggest “goldilocks result” when θ is the
independent variable in an analysis:

θ must be conditioned on all of the covariates in the structural equation
θ may not be conditioned on Y or any other variable associated with Y
conditional on θ that is not already in the structural equation, unless
there is model congeniality.
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Submodels of MESE: The Conditioning Model

Congeniality: Assume the conditioning model on θ (placed by the survey
institution) is

θ|Y ,Z ∼ N(β1Z + β2Y , σ
2)

By the Law of Total Probability and Bayes’ Rule, this conditioning model
forces:

p(Y |θ,Z ) =
p(θ|Z ,Y )p(Y |Z )

p(θ|Z )
=

p(θ|Z ,Y ) ∗ p(Y |Z ))∫
p(θ|Z ,Y ) ∗ p(Y |Z )dθ
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Submodels of MESE: The Conditioning Model

If we assume p(Y |Z ) ∼ N(γZ , τ2) then

p(Y |Z , θ) ∝ N(α1θ + α2Z , ξ
2)

where

α1 =
β2τ

2

β22τ
2 + σ2

α2 =
γσ2 − β1β2τ2

β22τ
2 + σ2

ξ2 =
σ2τ2

β22τ
2 + σ2
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Submodels of MESE: The Conditioning Model

If you believe that the *right* structural model is

Y |θ,Z ∼ N(α1θ + α2Z , ξ
2), (12)

then a conditioning model that contains Y will produce unbiased estimates
of α1 and α2.

But suppose you want to estimate a model like

Y |θ,Z N(α1θ + α2θ
2 + α3Z , ξ

2)

or *any other model* other than (12), then the conditioning model which
includes Y doesn’t match the structural model.
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Submodels of MESE: The Conditioning Model

Mis-specification of which covariates are in the conditioning model will
cause bias

Size and direction of the bias varies based on

the number of items on the test
the strength of the correlation between Y , Z , and θ.
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Submodels of MESE: The Conditioning Model
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Submodels of MESE: The Conditioning Model
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Submodels of MESE: The Conditioning Model
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Submodels of MESE: The Conditioning Model
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Submodels of MESE: The Conditioning Model
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Submodels of MESE: The Structural Model

Equation of primary interest

θ is treated as a random variable in a mixed-effects regression

Functional form depends on the substantive question of interest and
the response variable, Y .

Can accommodate several models; among them, any generalized
linear model

Schofield MESE



MESE In Action: STEM Retention

Rising concern about the under-representation, and specifically the
retention of minorities and women in science, technology, engineering,
and mathematics (STEM) disciplines in higher education.

In 2008, 31.7% of black, 33.1% of Hispanic students versus 43.9% of
whites persisted in STEM in the U.S.

Griffith (2010) found only 37% of women versus 43% of men
persisted in STEM in the U.S.

Schofield MESE



MESE In Action: STEM Retention

Studies control for many latent variables in trying to understand these
differentials

academic achievement (e.g., Maltese and Tai, 2011),

math and science identity (Chang, et al., 2011),

interest (Sullins, Hernandez and Fuller, 1995),

future time perspective (Husman, et al, 2007),

sense of community (Espinosa, 2011),

goals (Leslie, McClure and Oaxaca, 1998), or

personality traits (Korpershoek, Kuyper and van der Werf, 2012).
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MESE In Action: Modeling STEM Retention

Yi = 1 ∼ Bernoulli(pi ) (13)

log
pi

1− pi
= β0 + β1θi + β2Zi

where

Yi is a binary measure of STEM persistence,

θi = (θ1i , θ2i , . . . , θki ) is a vector of k latent variables measuring
cognitive and non-cognitive traits, and

Zi is a vector of demographic variables including indicator variables
for underrepresented minorities (URMs) and female gender.
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Modeling STEM Retention: The Data

1997 National Longitudinal Survey of Youth (NLSY97) n = 8900
youths ages 12 to 16 years old as of December 31, 1996.

Yi = a “stayer,” someone who persisted in a STEM major; or a
“leaver,” someone who declared a STEM major but did not persist to
graduation.

Race = 1 when a URM and 0 when not

Gender = 1 indicating Female gender or 0 when not

Six latent variables:

The PIAT: a measure of cognitive proficiency in mathematics
(J ≤ 100; binary questions)
The TIPI: measures of the Big Five: Extraversion, Agreeableness,
Conscientiousness, Emotional Stability, and Openness. (J = 2 per
personality characteristic; Likert-type responses)
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Modeling STEM Retention: The Data

Table: Sample Characteristics, 1997 National Longitudinal Survey (NLSY97)

Female Male URM NonURM Total

N 163 265 133 295 428
Proportion Stayers 0.49 0.67 0.50 0.65 0.60

Notes: Author’s calculations, 1997 National Longitudinal Survey of Youth.
Sample of only those youth who have completed a two or four-year college
degree and declared a STEM major at some point in their college career.
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Modeling STEM Retention: The Data
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Figure: Average PIAT and TIPI Scores by Race and Gender
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Modeling STEM Retention: The Results

Table: Logistic Regression of Persistence in STEM (NLSY97)

(a) (b) (c) (d) (e) (f) (g)
Baseline PIAT TIPI TIPI & PIAT

adjusted for ME? N Y N Y N Y
URM −0.584* −0.427* −0.375 −0.641* −0.894* −0.472 −0.690

(0.223) (0.217) (0.235) (0.222) (0.474) (0.237) (0.411)

Female −0.704* −0.717* −0.728* −0.594* −0.128 −0.612* −0.270
(0.203) (0.210) (0.212) (0.226) (0.616) (0.223) (0.526)

PIAT 0.330* 0.324* 0.341* 0.400*
(0.109) (0.121) (0.113) (0.200)

TIPI Extraversion −0.284* −0.625 −0.280* −0.661
(0.111) (0.652) (0.115) (0.546)

TIPI Agreeableness −0.227 −0.943 −0.242* −0.957*
(0.117) (0.745) (0.115) (0.489)

TIPI Conscientiousness 0.082 0.432 0.081 0.444
(0.107) (0.327) (0.106) (0.312)

TIPI Emo. Stability 0.036 0.397 0.017 0.215
(0.114) (0.460) (0.116) (0.388)

TIPI Openness −0.083 −0.177 −0.083 0.354
(0.113) (0.948) (0.116) (0.857)

N 428 428 428 428 428 428 428
DIC 560 552 554 555 505 547 507
Error Rate 36.9% 35.7% 36.4% 32.7% 23.1% 32.7% 22.7%
Notes: Sample of those youth who have completed a two or four-year college degree who declared a STEM major
at some point. All estimates of latent variables have been standardized.
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MESE In Action: Intergenerational Transference of Human
Capital

Since the 1970s, inequality in the US has grown remarkably

Chetty, Hendren, Kline, Saez, and Turner (2014) report that for
children born between 1971 and 1986 face a remarkably stable
intergenerational correlation, consistently showing rank-rank slopes
ranging from 0.30 to 0.35

There are a host of measurement issues with using income that has
been explored quite extensively by Solon and others

In addition, interpretation of the coefficient is a bit opaque because it
includes human capital decisions, labor supply, and location decisions

Could examine how human capital as measured by test scores is
transmitted across generations
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Ideal Model for Examining Intergenerational Transference

Ideally, we would like to estimate a regression with a random intercept for
mother

θ(c)i = β0p + β1θ(m)i + ei

We will adjust the MESE model to do this:

θ(c)i |θ(m)i , β0, β1 ∼ N(β0p + βθ(m)i , σ
2) (14)

β0p ∼ N(0, 1) (15)

X(c)ij |θ(c)i , γ(c)j ∼ IRT (X(c)ij |θ(c)i , γ(c)j) (16)

X(m)il |θ(m)i , γ(m)l ∼ IRT (X(m)il |θ(m)i , γ(m)l) (17)

θ(m)i ∼ N(0, 1) (18)
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NLSY data

We use the children of the NLSY79 performances on the PIAT math
test as the dependent variable

For the mother’s human capital we use the AFQT, J = 104 item
subset of the ASVAB test for the1979 Cohort

We divide our sample of mothers into three groups based on the race
and ethnicity (white, black, and Hispanic) reported by the mother in
1979 round

We report the impact of a one-standard deviation increase in the
mother’s AFQT score on the number of standard deviation her child’s
PIAT score for both OLS and MESE
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Intergenerational Transference of Human Capital: Results

Table: Results: Intergenerational Transference of Human Capital

n OLS MESE

White 4170 0.410 0.378
Black 2693 0.341 0.267
Hisp 1742 0.371 0.294

Notes: Author’s calculations, 1979 Na-
tional Longitudinal Survey of Youth
and their children. Sample of only
those for whom we have both an AFQT
score for the mom and a PIAT score for
the child.
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Observations

Measurement error inherent in latent variables must be modeled when
the latent variables are used as predictors in secondary analyses or
else bias ensues in both

the effect of the latent variable on the outcome of interest
the effect of any covariate associated with the latent variables

The bias increases with shorter tests/surveys

One way to do account for the measurement error is the MESE model

MESE results are substantially different than OLS
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Observations: STEM Retention Gap

In STEM retention gaps, OLS substantially underestimates the effect
of the latent variables, especially the personality traits.

Racial gaps become insignificant after controlling for math proficiency
and its measurement error

After adjusting for measurement error, results suggest
comparably-skilled and comparably-traited men and women are
equally likely to remain in STEM
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Observations: Intergenerational Transference of Human
Capital

The results indicate that OLS substantially overstates the degree of
correlation, especially for Hispanic and African Americans

The correlation between generation is the strongest for whites. Given
the academic progress made by Hispanic and African American
students, this is probably as expected

The correlation for whites is quite similar from those found in Solon’s
work and Chetty and his co-authors, but for African Americans and
Hispanics it is considerably lower
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