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1. Reasons for Using Weights
1. Heteroskedasticity

∙ No longer needed for inference.
∙ Could help with efficiency, even if the weights are incorrect.
∙ Generally inconsistent for the linear projection parameters.
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2. Treatment Effects Estimation

∙ Propensity score weighting.
∙ Combined with regression, leads to “doubly robust” estimators.
3.Missing Data, Including Attrition

∙ Requires a kind of “missing at random” assumption.
∙Mechanically similar to treatment effect estimation.

4



4. Survey Sampling

∙ The sample is not representative of the population of interest.
 Standard stratified sampling.

 Variable probability sampling.

 Combinations of stratification, VP sampling, cluster sampling.

∙ Sampling weights are used routinely for summary statistics.
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∙ Should the survey weights be used in regression?
 Still a debate.

∙What about for a randomized controlled trial?

∙ Issues:
 Does the sampling scheme depend on the response variable, or

just covariates?

 How much are we willing to assume about our model?

 Tradeoff between consistency and efficiency.
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2. The Linear Model in the Population
∙ Specifying the population is important.
 Interested in an educational production function for a specified

population of students.

 Interested in a population average treatment effect.
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∙ The population is represented by a random vector,

y,x1, . . . ,xK.

y is the dependent or response variable
xj are explanatory variables (covariates)
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∙ Ideally, we can estimate the conditional mean,

Ey|x1,x2, . . . ,xK  Ey|x
≡ x
 x1,x2, . . . ,xK.

∙ But x can be virtually anything.
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∙ Linear projection of y on 1,x1, . . . ,xK:

Ly|1,x1, . . . ,xK  0  1x1   KxK  0  x.

∙ The population regression coefficients are

K1

  Varx−1Covx,y

0  Ey − Ex.

∙ The linear projection is definitional.
∙ It exists for any y and any vector x (with finite second
moments).
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∙ The LP is equivalent to writing

y  0  1x1   KxK  u
Eu  0

Covxj,u  0, j  1, . . . ,K

∙Why might one settle for the LP?
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1. It is consistently estimated by OLS under random sampling.

 No other assumptions are needed.

 Use heteroskedasticity-robust inference.
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2. The LP has an important approximation property.

 The LP is the minimum mean squared error linear

approximation to the conditional mean function.

With x  Ey|x, 0, 1, . . . , K solve

min
b0,b∈RK

Ex − b0 − xb2.

 If x is linear in x then the CM and LP are the same:

x  0  x.
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3. The LP slope parameters are often good estimates of the

average partial effects.

With x  Ey|x, if xj is continuous, the APE is

 j  APEj  Ex
∂x
∂xj

 There are some (restrictive) theoretical results that imply

 j   j.

 For example, true model is quadratic in the xj, distribution of x

is symmetric.
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 If

x    x ∑
j1

K

∑
h1

K

 jhxj − jxh − h

and x has a symmetric distribution then

 j  E ∂x
∂xj

  j, j  1, . . . ,K

 Or  is any differentiable function, x is multivariate normal.
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4. Estimating the LP can improve efficiency in RCTs; no extra

assumptions needed.

 Often called “regression adjustment” in the context of

treatment effects.

 No need to have the conditional mean correctly specified.
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∙ These four features of the LP justify the use of linear regression
for discrete y.

 For example, for binary y, can justify the “linear probability

model” without assume the LPM is the correct model.

∙ Can always linearly project onto nonlinear functions, such as
squares and interactions.

 Provides a better approximation to Ey|x.
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3. Sampling Weights and Weighted Estimation
∙ z  x,y ∈ Z.

y  x  u

∙ Partition Z as Z1, Z2, ..., ZG.
∙ Population (aggregate) shares:

g  Pz ∈ Zg, g  1, . . . ,G.
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∙ Standard stratified sampling:

hg  Ng/N (sample shares).

∙Weight for unit i: wi  gi/hgi .

∙ “Weighted” least squares:

min
b∈RK
∑
i1

N

wi  yi − x ib2

∙ Consistency only requires Ex ′u  0.

∙ Inference should account for strata as well as weights – standard
in survey estimation software.
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∙ VP sampling: pg is the probability of retaining a draw from

stratum g.

∙ si is sample selection indicator.

wi  1/pgi

min
b∈RK
∑
i1

N

si  wi  yi − x ib2

∙ Again, consistency only requires requires Ex ′u  0.
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Should We Use the Sampling Weights?

A. Stratification depends (partly) on y.

∙ The unweighted estimator does not consistently estimate ,
even if

Ey|x  x

∙ Hard to justify not using weights.
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B. Stratification depends on x.

∙ Debate centers on two facts:
1. If Eu|x  0 the unweighted estimator is also consistent.

 If we add homoskedasticity in the population,

Varu|x  2,

then the unweighted (OLS) estimator is asymptotically more

efficient than the weighted estimator.

∙ Efficiency argues against weighting.
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2. The unweighted estimator is inconsistent for  if we only

assume

y  x  u, Ex ′u  0,

even when stratification is based on x.

 The weighted estimator consistently estimates the coefficients

 in the linear projection.

 Ey|x  x is a special case.

∙ Consistency argues for weighting.
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∙ Practical Issue:
(i) Weighted and unweighted estimates differ.

(ii) Weighted estimates imprecise.

∙ Can we justify the usual OLS estimates?
∙ Suggests a Hausman test.
∙ But it should be made robust.

24



∑
i1

N

wix i′ yi − x i̂WLS  0

∑
i1

N

wix i′ yi − x i̂OLS ≈ 0?

∙ Use OLS on

yi  x i  wix i  ui
H0 :   0

∙ Heteroskedasticity-robust Wald test.
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4. Regression Adjustment for Treatment Effect
Estimation
∙ d is a binary treatment indicator.
∙ For each unit in the population, two potential outcomes, y0
and y1.

∙ Population average treatment effect:

ate  Ey1 − y0

∙ Along with d we observe

y  1 − d  y0  d  y1
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∙ If d is randomized, can use simple difference in means:

ȳ1 − ȳ0

∙With nonrandom sampling, generally have to use the sampling

weights for consistency.

min
, ∑

i1

N

wi  yi −  − di2

∙Might try to improve efficiency by using regression adjustment

with covariates x.
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∙ Negi and Wooldridge (2018) under random sampling.

∙ Separate regressions for the control and treatment groups.

̂ate  N−1∑
i1

N

̂1  x i̂1 − ̂0  x i̂0

 ̂1 − ̂0  x̄ ̂1 − ̂0

∙ The asymptotic variance of ̂ate is no greater than that of
ȳ1 − ȳ0, and usually smaller.

∙ Key: No extra assumptions are made.
∙ The separate regressions consistently estimate the linear
projections Ly0|1,x, Ly1|1,x.
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∙With survey sampling, have to use the weights for two reasons.

1. To consistently estimate the parameters in the linear

projections.

 The separate regressions use the survey weights.

2. To consistently estimate x  Ex:

̃ate  ̃1 − ̃0  N−1∑
i1

N

wi  x i ̃1 − ̃0

∙ If weights are not used in both stages, ̃ate not guaranteed to be
consistent.
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5. Summary
∙ To ensure consistency use the sampling weights – if they can be
trusted.

∙ Desirable to estimate the best linear approximation in the
population.

Might get good estimates of average partial effects, including

average treatment effects.
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∙ For RCTs, need to use weights whether or not one uses simple
difference in means or regression adjustment.

 The linear RA case extends to particular nonlinear methods,

such as logit and Poisson.
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∙ Can use sampling weights along with propensity score weights.
1. Treatment effects estimation.

 Use sampling weights when estimating propensity score.

 Combine weights with regression adjustment.

2. Missing data.

 Again, use sampling weights when estimating propensity

score.
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