OECD ENVIRONMENTAL JUSTICE CONFERENCE 2024

Unequal Health Burden of Particulate Matter : Addressing Environmental Justice Through Health Disparities Research

2024. 05. 28.

Jong-Tae Lee, M.Sc., Ph.D. College of Health Sciences, Korea University Multidisciplinary Research Center for Public Health in Complex System PM-Health Research and Management Center

Unequal health burden of particulate matter (PM)¹

¹ O'Neill, M. S., Jerrett, M., Kawachi, I., Levy, J. I., Cohen, A. J., Gouveia, N., ... & Workshop on Air Pollution and Socioeconomic Conditions. (2003). Health, wealth, and air pollution: advancing theory and methods. Environmental health perspectives, 111(16), 1861-1870.

To alleviate traffic congestion and reduce traffic-related air pollution, **London** and **Rome** introduced the congestion charging scheme:

In London, the **most deprived areas** experienced greater air pollution reductions and mortality benefits compared to the least deprived areas¹

Region	Pre-CCS PM ₁₀ concentration	Post-CCS PM ₁₀ concentration	Post-Pre difference	Years of life gained during 10 years per 100,000
1 (Least deprived)	25.73	25.72	-0.01	3
2	26.50	26.47	-0.03	8
3	26.73	26.70	-0.03	8
4	27.02	26.97	-0.05	13
5 (Most deprived)	27.62	27.54	-0.08	20

* Congestion Charging Scheme (CCS) during 2003.02. ~ 2007.02.

¹ Tonne, C., Beevers, S., Armstrong, B., Kelly, F., & Wilkinson, P. (2008). Air pollution and mortality benefits of the London Congestion Charge: spatial and socioeconomic inequalities. Occupational and Environmental Medicine, 65(9), 620-627.

In Rome, the **least deprived areas** experienced greater air pollution reductions and mortality benefits compared to the most deprived areas¹.

Region	Pre-CCS PM ₁₀ concentration	<i>Expected</i> Post- CCS PM ₁₀ concentration	<i>Expected</i> Post-Pre Difference	Years of life gained during 15 years per 100,000
1 (Least deprived)	8.69	8.49	-0.20	229
2	9.25	9.08	-0.17	198
3	8.77	8.67	-0.10	118
4	8.56	8.46	-0.10	115
5 (Most deprived)	7.83	7.78	-0.05	59

* Low Emission Zone during 2001 ~ 2005

¹ Cesaroni, G., Boogaard, H., Jonkers, S., Porta, D., Badaloni, C., Cattani, G., ... & Hoek, G. (2012). Health benefits of traffic-related air pollution reduction in different socioeconomic groups: the effect of low-emission zoning in Rome. Occupational and environmental medicine, 69(2), 133-139.

Risk = Exposure × Hazard

5

People with low socioeconomic status or those living in deprived regions experience higher health risks associated with PM₁₀¹

¹ Kim, S. Y., O'Neill, M. S., Lee, J. T., Cho, Y., Kim, J., & Kim, H. (2007). Air pollution, socioeconomic position, and emergency hospital visits for asthma in Seoul, Korea. International archives of occupational and environmental health, 80(8), 701-710.

Regions with limited medical resources or greenness experience higher health risks associated with PM_{2.5}¹

Figure 3. Associations between $PM_{2.5}$ and cause-specific mortality stratified by community-level variables: Medical index and NDVI (normalized difference vegetation index)

¹ Byun, G., Kim, S., Choi, Y., Kim, A., Team, A. C., Lee, J. T., & Bell, M. L. (2024). Long-term exposure to PM_{2.5} and mortality in a national cohort in South Korea: effect modification by community deprivation, medical infrastructure, and greenness. BMC Public Health, 24(1), 1-12.

7

People with disabilities experience higher health risks associated with PM_{10}^{1}

*Lag(0)=current day; Lag(1)= a previous day; Lag(*i*)= *i* days ago

¹ Kim, S., & Lee, J. T. (2022). Short-term exposure to PM₁₀ and cardiovascular hospitalization in persons with and without disabilities: Invisible population in air pollution epidemiology. Science of The Total Environment, 848, 157717.

Differential toxicity of various sources and components of PM_{2.5} mixture¹

Figure 3. Percent change in risk for total (A), cardiovascular (B), and respiratory (C) mortality per IQR increase in PM_{2.5} mass and chemical components. Points represent central estimates, and horizontal lines represent 95% CIs.

IQR: interquartile range=25th -75th

¹ Son, J. Y., Lee, J. T., Kim, K. H., Jung, K., & Bell, M. L. (2012). Characterization of fine particulate matter and associations between particulate chemical constituents and mortality in Seoul, Korea. *Environmental Health Perspectives*, 120(6), 872-878.

The Contextual Factors Determining the Hazard of PM

- Individual/Regional socioeconomic status
- Disability characteristics
- Regional medical infrastructure
- Residential greenness
- PM emission sources and compositions

Dahlgren, G., & Whitehead, M. (1991). Policies and strategies to promote social equity in health. Stockholm: Institute for future studies.

Conclusion

- The health effects of particulate matter (PM) vary not only with mass concentration but also depending on the context encompassing time, place, and population groups.
- If policies are implemented without considering these context, health inequalities associated with PM may actually worsen.
- From the perspective of environmental justice, future PM management should move towards **customized policies that take this context into account**.

Thank you.