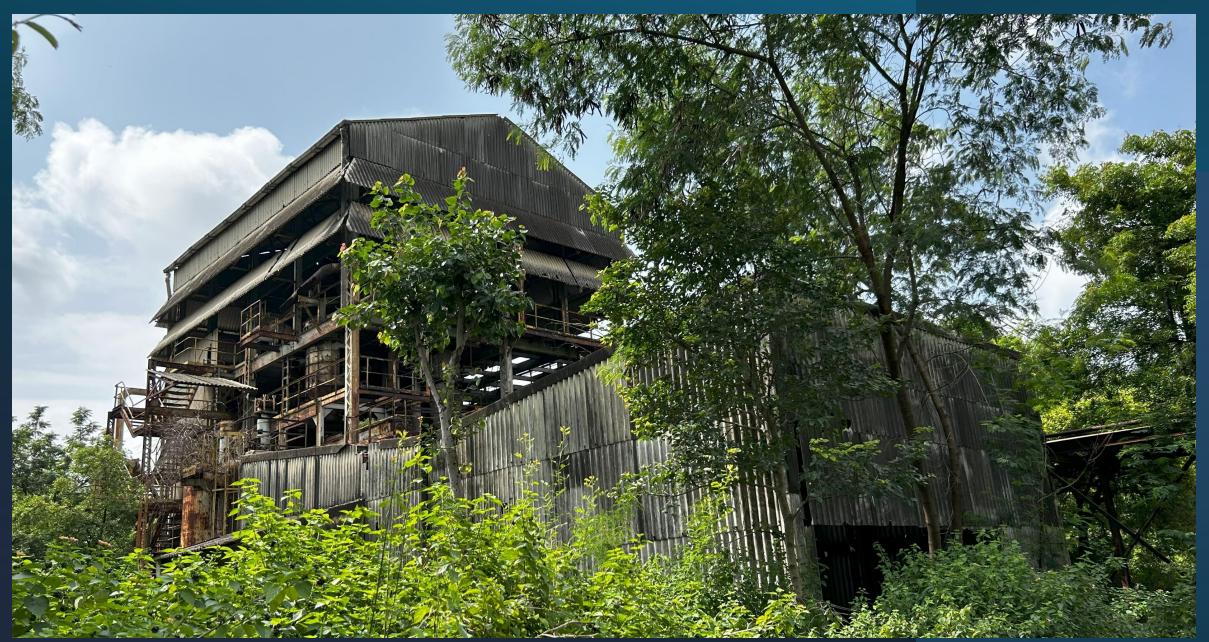
OECD Conference on Environmental Justice

28-29 May 2024 OECD Headquarters, Paris

Conférence de l'OCDE sur la justice environnementale

28-29 mai 2024 Siège de l'OCDE, Paris


Unpacking inequitable distribution of environmental hazards and amenities Fiona Macleod CEng FIChemE

BHOPAL – A Case Study

The world's worst industrial accident

What went wrong?

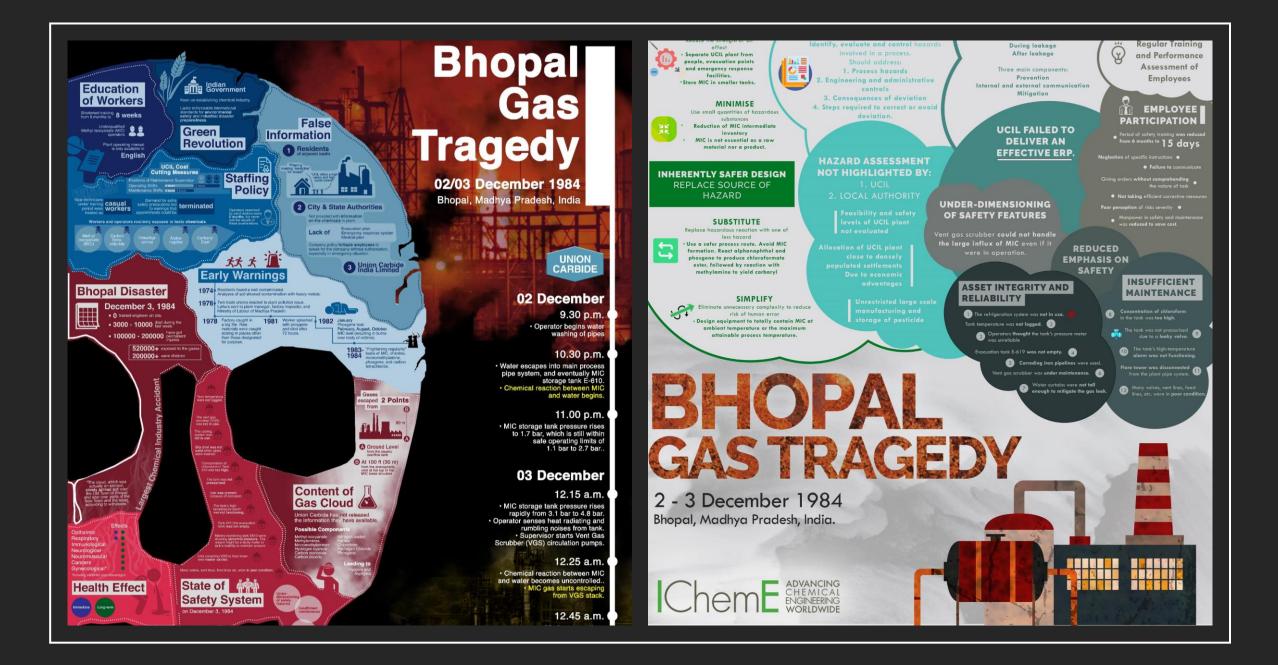
accident prevention, preparedness, response and follow up

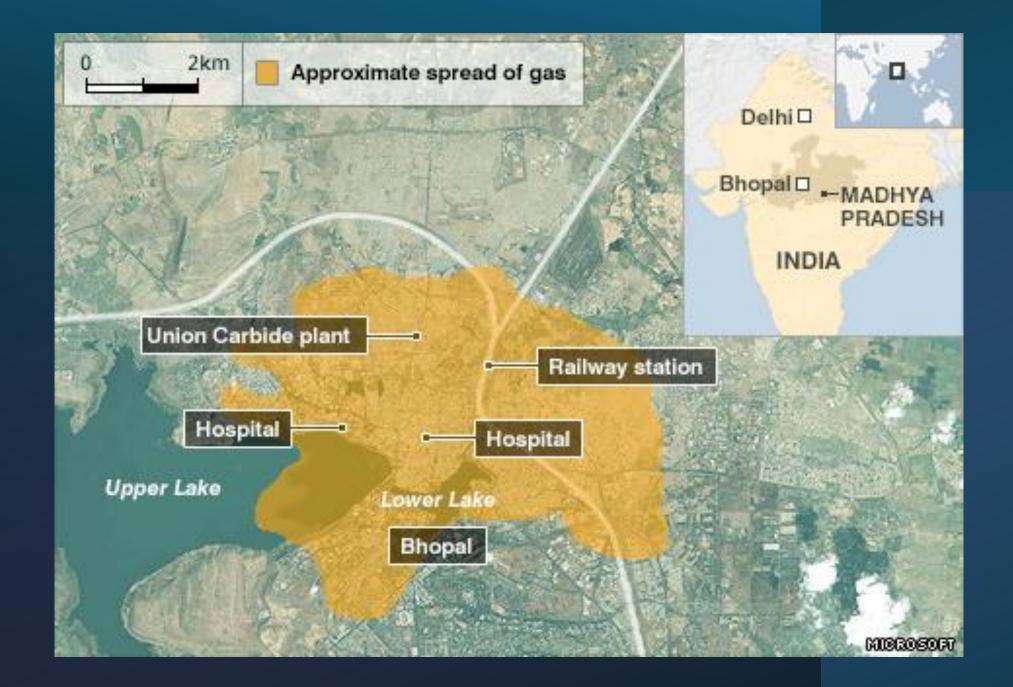
Former UCIL Bhopal factory todayPhoto taken August 2023 – ©thechemicaldetectivewww.thechemicaldetective.blog

Bhopal UCIL Tragedy

When?	Just after midnight on the night of 2/3 December 1984
Where?	Union Carbide India Limited (UCIL) factory in Bhopal, India
What?	Toxic gas was released into the community
How?	Water mixed with chemicals leading to a runaway reaction
Who?	Thousands died and hundreds of thousands were injured The legacy continues to blight the lives of local people today

Why? – Contributing Causes


Operational decisions in the 1980s – running to closure


- Increased inventory
- Loss of experienced staff
- Operational workarounds
- Reduced maintenance
- Compromised safety systems

Why? – Root Cause

Design decisions made in the 1970s – Inherent Safety

- Process Hazard Analysis
- Materials of Construction
- Equipment Reliability

OECD Guiding Principles for Chemical Accident Prevention, Preparedness and Response

PREVENTING ... LOSS OF CONTAINMENT OF HAZARDOUS SUBSTANCES

PREPARING ...MITIGATING ADVERSE EFFECTS OF ACCIDENTS THROUGH EMERGENCY PLANNING, LAND-USE PLANNING, AND COMMUNICATION WITH THE PUBLIC

RESPONDING ... MINIMISE THE ADVERSE CONSEQUENCES...

FOLLOW-UP ... CLEAN-UP ... ACCIDENT REPORTING AND INVESTIGATION

Guidance on Change of Ownership in Hazardous Facilities

Managing change

Change of ownership

• Closure

Preventing

Inventory minimisation – what you don't have, can't leak

Materials of construction – inherent safety

A

Equipment specification reliability

Instrumented Safety Systems – Independent safeguards

Process Hazard Analysis and Risk Assessment

Preventing - Bhopal

Large Quantities of a Hazardous Intermediate (MIC) stored on a site in the middle of a town

6	

Lack of instrumentation and Independent safeguards

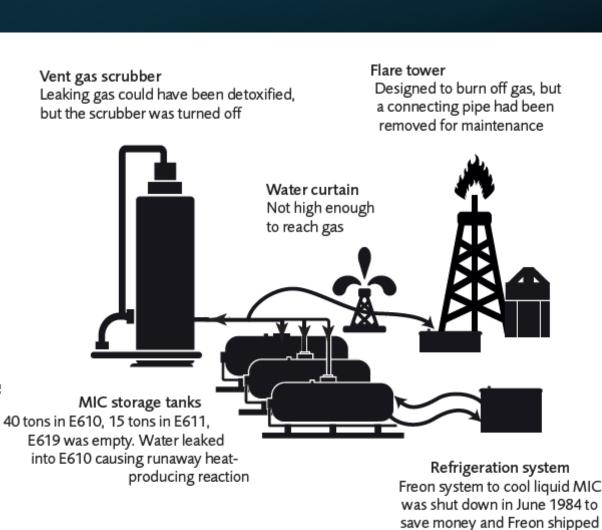
Vent gas header constructed of Carbon Steel instead of Stainless Steel

Workarounds common No effective Management of Change

MIC transfer and circulation pumps unreliable

Loss of trained staff Lack of appreciation of hazards

Preparing



Land use planning

Communication

Preparing - Bhopal

- Emergency planning
 - Flare disconnected
 - Vent gas scrubber not in operation
 - Refrigeration decommissioned
 - Water curtain pressure insufficient
 - Public alarm silenced
- Land use planning
 - Growth of communities around site
- Communication
 - Limited

to other plants

Responding

Alert response personnel

Trigger the Emergency Plan

Warn the public

Limit adverse effects to health and environment

Effective and open communication with the public

Responding – Bhopal – Too little, too late

- Instrument alarms overridden
- Public alarm system was silenced
- Panicking public left their homes and fled into gas cloud
- Hospitals had no idea how to treat victims
- Compensation was too little and too late
- Health care wholly inappropriate
- Lease terminated before clean up
- Groundwater contamination continues

The application of the **Polluter Pays Principle** acts as a major incentive for management of hazardous installations to do everything in their power to avoid accidents

Areas affected by accidents involving hazardous substances should be monitored to determine if there are any **long-term or delayed consequences** of acute exposures

Appropriate epidemiological and **medical follow-up** procedures should be put into place for monitoring and observation of persons exposed to hazardous substances

An **investigation** should be a fact-finding activity to learn from experience, not an exercise designed to allocate blame or liability.

Follow up - Bhopal

- Chemical plant equipment, piping and structures have been left to corrode and are in an increasingly dangerous state.
- There is no meaningful security access to the wasteland is open to all, including children and grazing domestic animals.
- There are ~350 tonnes of packaged hazardous waste that need to be contained, stabilised and safely destroyed.
- The soil inside the is contaminated, and ground water pollution continues to spread.
- There has been no effective clean-up of the former UCIL site or the external Solar Evaporation Ponds in Bhopal.
- The surrounding communities continue to suffer.

The second tragedy - Environmental

- Environmental problems at the factory predate the 1984 accident
- A failure to maintain the solar evaporation pond barriers or control hazardous waste has led to heavy contamination of the groundwater in and around the abandoned factory with
 - Heavy metals including mercury, chromium and lead
 - Organoclorides classed as persistent organic pollutants
- Many of the communities affected have still not been provided with a reliable source of clean drinking water
- Domestic animals continue to graze on contaminated land inside and outside of the factory
- The ground water pollution continues to spread.

Final Message

Before construction

- Substitute
- Minimise
- Simplify
- Moderate

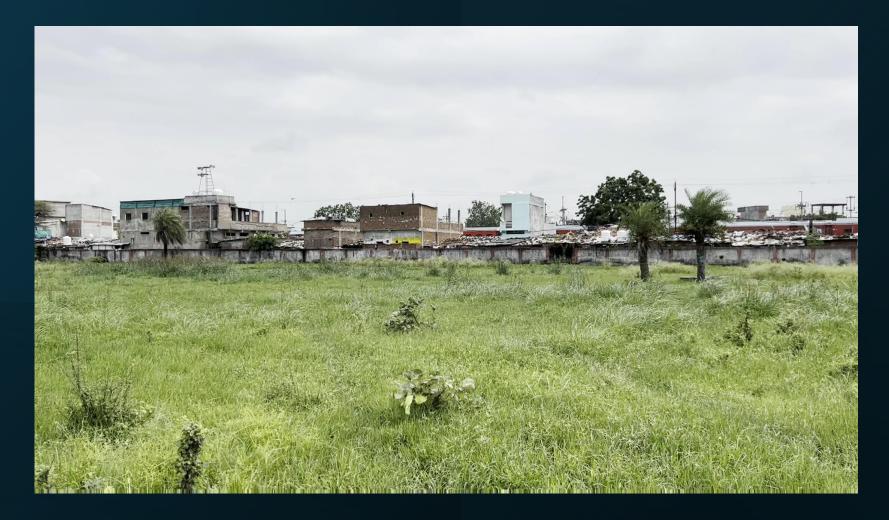
Build in Error tolerance Inherent safety by design

After closure

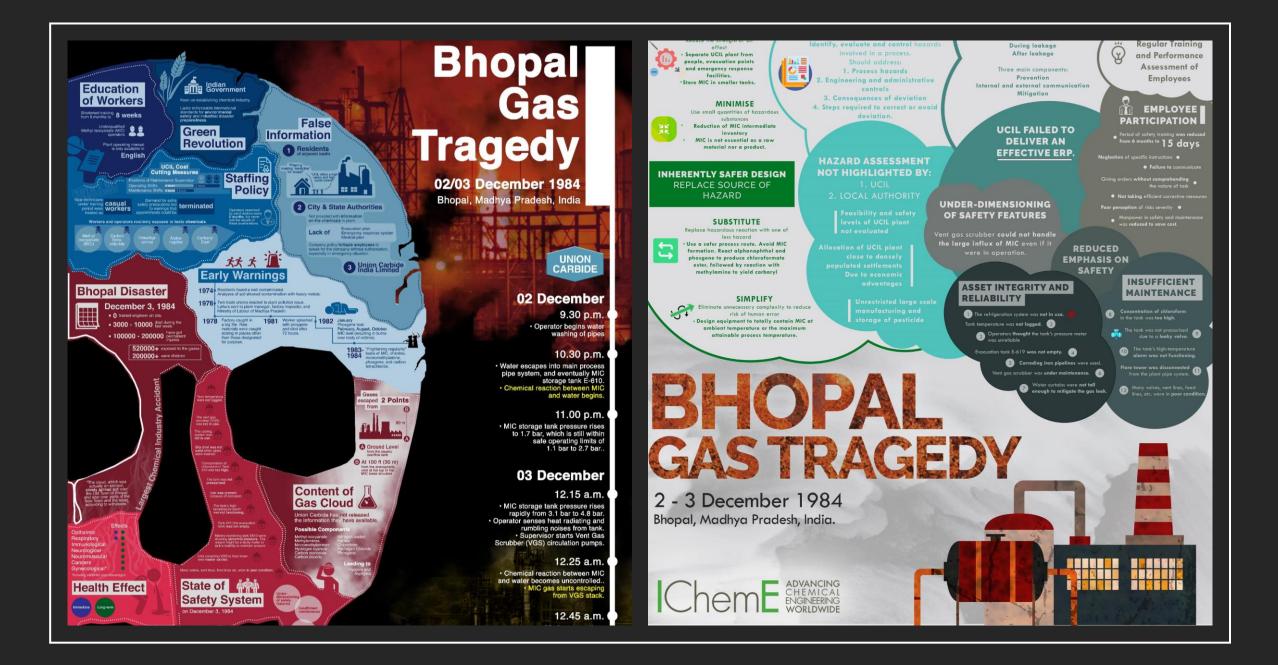
Timely and effective clean-up

How to break the impasse?

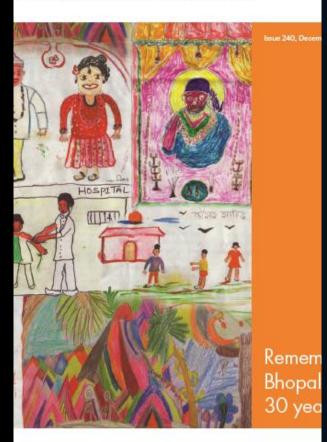
- 1989 US\$470M settlement brokered by Government did not include funds for remediation
- 1994 US parent company sold its majority share in Indian Subsidiary to fund a hospital
- 1998 State Government cancelled the lease and resumed control of the site
- 2013 Indian NGO outlines steps before environmental remediation can proceed
- 2024 No progress
- GOI Government of India
- Parent UCC Union Carbide Corporation
- Subsidiary UCIL Union Carbide India Ltd
- Buyer Eveready Eveready Industries India Ltd
- MP Madhya Pradesh State Government
- NGO CSI Centre for Science and Environment, Delhi, India



Summary of Action Plan


IMMEDIATE MEASURES	
SECURING THE SITE AND PREVENTING ANNUAL SURFACE WATER RUNOFF	THREE MONTHS
Fencing and guarding of the UCIL site and landfill area within the SEP	Immediate
Stopping construction at the SEP area	Immediate
Measures to be taken to protect annual surface water runoff from the site during monsoon	Three months
EXCAVATION, RECOVERY AND CHARACTERISATION OF WASTE DUMPED AT THE UCIL SITE	SIX MONTHS
Clearing vegetation and dewatering the site	One month
Identification and refurbishment of a temporary storage area for excavated waste	Three months
Excavation and recovery of dump materials from already identified and new sites	Three months
Recovery of mercury present in drains, pan filters and soil with the help of local community	Three months
Characterisation and inventorisation of the collected waste for proper treatment and/or disposal	Six months
CHARACTERISATION AND INCINERATION OF THE STORED WASTE AT THE UCIL SITE	SIX MONTHS
Trial at the Pithampur incinerator with ten tonnes of similar waste from HIL, Kerala	Three months
Characterisation results of the stored UCIL waste to be made public; if required, further characterisation and inventorisation to be done in parallel with the trials	Three months
Waste with high calorific value and hazardous in nature to be incinerated with continuous stack monitoring;	Six months
remaining waste to be dealt with suitable decontamination/remediation measures	
MEDIUM- AND LONG-TERM MEASURES	
GROUNDWATER CONTAMINATION ASSESSMENT AND REMEDIATION OUTSIDE THE UCIL SITE	TWO TO THREE YEARS
Field investigation and lab analysis of the groundwater	One year
Possibility of hydraulic containment to be explored as an interim measure	Six months to one year
Remediation/containment plan to be developed and implemented	Two to three years
CHARACTERISATION AND REMEDIATION OF WASTE DUMPED IN LANDFILL IN THE SEP AREA	ONE TO TWO YEARS
Characterisation of waste and development of a basket of disposal/decontamination/remediation options	One year
Disposal/remediation of the waste and decontamination of the landfill area	One to two years
REMEDIATION OF ENTIRE SEP AREA	THREE TO FIVE YEARS
Assessment of the need of geohydrological and contamination analysis based on previous reports	Three months
If required, SEP to be studied for waste characterisation and source of groundwater contamination	One year
Development and implementation of the remediation plan keeping residential purpose in mind	Three to five years
DETOXIFICATION, DISMANTLING AND DECOMMISSIONING OF UCIL PLANT, MACHINERY AND STRUCTURE	TWO YEARS
MIC plant including the vent, vent scrubber, storage tanks and control room to be strengthened and preserved	Two years
Remaining parts of the site to be decontaminated, dismantled and decommissioned as recommended by IICT	Two years
REMEDIATION AND FATE OF THE UCIL SITE	THREE TO FIVE YEARS
Geohydrological and contamination studies for the site based on stratified judgmental sampling	Two years
Development of a basket of decontamination/disposal methods accordingly	Two to three years
Remediation plan based on future use as a memorial and a centre of excellence	Two to three years
An international competition on master planning for conversion of the site	One year
Implementation of the remediation plan and conversion of the site to a memorial and a centre of excellence	Three to five years

No progress on 2013 plan



Videos taken August 2023 ©thechemicaldetective www.thechemicaldetective.com

Loss Prevention Bulle

Improving process safety by sharing experience

ChemE

References

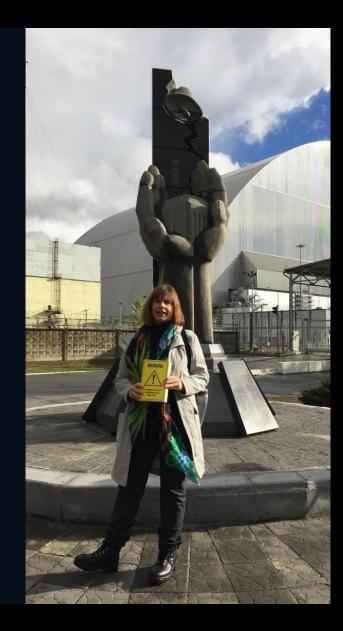
Loss Prevention Bulletin – 30 Years on

https://www.icheme.org/media/1277/lpb240_digimag.pdf

Plan Environmental Remediation in and around

Action Plan CSE India Environmental Remediation Environment, *India* http://cseindia.org/userfiles/Action%20Plan_Environment al%20Remediation%20in%20and%20around%20UCIL,% 20Bhopal.pdf

SEISO Medal – winning student entry SEISO Medal winning student entry poster https://www.icheme.org/media/12445/tzelin-siesomedal-2019-graphic-art-1.jpg

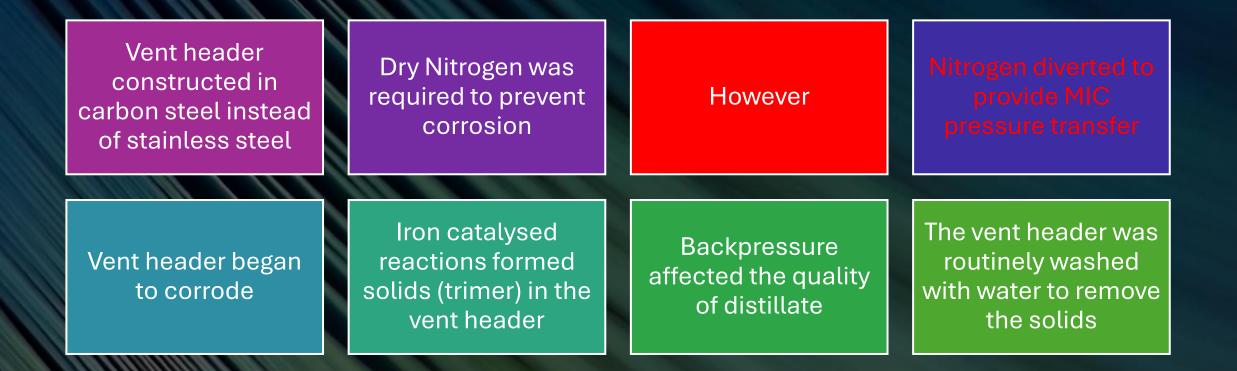

https://www.icheme.org/media/12446/tzelin-siesomedal-2019-graphic-art-2.jpg

Rethinking Bhopal by Kenneth Bloch

https://shop.elsevier.com/books/rethinkingbhopal/bloch/978-0-12-803778-2

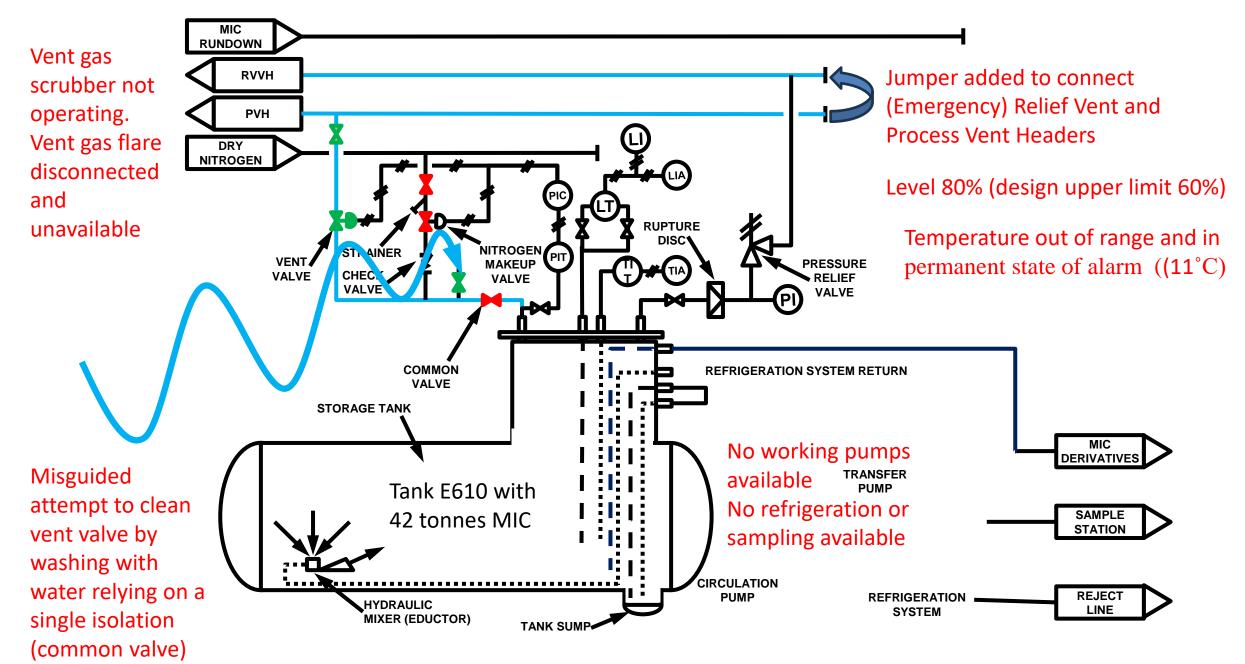
Long-term health and human capital effects of in utero exposure to anindustrial disaster: a spatial difference-indifferences analysis of the Bhopal gas tragedy Gordon C McCord BMJ Open

https://bmjopen.bmj.com/content/13/6/e066733


Appendix

Root Cause Analysis

Equipment reliability


Transfer pumps unreliable	Operational change approved to bypass the MIC pumps	Pumped transfer was changed to pressure transfer	Nitrogen was diverted to pressurise the tank
Circulation pumps unreliable	In line quality sampling stopped	MIC Refrigeration stopped	High Temperature alarms overridden High pressure ignored

Materials of Construction

Process Hazard Analysis

Phosgene gas risks understood and controlled	Phosgene gas made in-situ and consumed	Original US process involved an intermediate that boiled at 296C	However
Revised US process used MIC with boiling point of 35C	MIC forms solid trimers with iron	MIC reacts violently with water	Dry Inert and Rust-free Conditions Essential

Ref: Kenneth Bloch Rethinking Bhopal 2016 Elsevier IChemE