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LEVERAGING THE SMART GRID: THE EFFECT OF REAL-TIME INFORMATION ON 

CONSUMER DECISIONS 

ABSTRACT 

 

Smart meters have the potential to have a significant effect on the electricity market through two 

mechanisms. First, they make it possible for electricity consumers to obtain information in real-time about 

the quantity of electricity consumed as well as the price of electricity. This information improves the 

consumer’s ability to optimise electricity consumption decisions, and likely makes electricity 

consumption more salient to consumers. Second, smart meters make it possible for consumers to be 

exposed to electricity prices that vary over time, to better reflect scarcity in the electricity market. 

This report reviews the literature on the impact of real-time information provision on consumer 

decision-making. In addition, it describes the results of a study in which about 7000 households in 

Ontario, Canada were provided with in-home displays linked to smart meters that provided real-time 

feedback on electricity consumption. The results show that electricity consumption declines by about 3% 

as a result of information feedback, that the reduction in demand is sustained for at least five months, and 

that it is highly correlated with outdoor temperature. However, although households reduce electricity 

consumption on average when exposed to real-time feedback, the findings suggest that real-time 

information has an ambiguous effect on household responsiveness to electricity price changes. 

Keywords: Electricity demand, energy conservation, information provision, time-of-use pricing. 

JEL codes: D12, L94, Q41, Q48 

 

TIRER AVANTAGE DES COMPTEURS INTELLIGENTS : L’EFFET DE 

L’INFORMATION EN TEMPS REEL SUR LES DECISIONS DU CONSOMMATEURS 

RÉSUMÉ 

Les compteurs intelligents peuvent avoir un effet significatif sur le marché de l’électricité grâce à  deux 

mécanismes.  Premièrement, ils permettent aux consommateurs d’électricité d’obtenir des informations 

en temps réel sur la quantité  d’électricité consommée ainsi que sur le prix de l’électricité. Cette 

information améliore la capacité du consommateur à optimiser les décisions de consommation 

d’électricité, et rend probablement la consommation d’électricité plus importante pour les consommateurs. 

Deuxièmement, les compteurs intelligents permettent aux consommateurs d’être exposés à des prix de 

l’électricité qui varient au fil du temps, afin de mieux refléter la pénurie sur le marché de l’électricité.  

Ce rapport examine la littérature sur l’impact de l’information en temps réel sur la prise de décision des 

consommateurs. En outre, il décrit les résultats d’une étude dans laquelle environ 7000 ménages ontariens ont 

reçu des écrans relies à  des compteurs intelligents qui ont fourni une rétroaction en temps réel sur la 

consommation d’électricité. Les résultats montrent que la consommation d’électricité diminue d’environ 3% 

par suite de la rétroaction, que la réduction de la demande est maintenue pendant au moins cinq mois et 

qu’elle est fortement corrélée avec la température extérieure. Les résultats suggèrent que l’information en 

temps réel a un effet ambigu sur la réaction des ménages aux variations des prix de l’électricité. 

Mots clés: Demande d’électricité, conservation d’énergie, provision de l’information, tarification en 

fonction de l’heure de consommation.  

JEL codes: D12, L94, Q41, Q48 
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EXECUTIVE SUMMARY 

Electricity is a unique commodity for a number of reasons, but of particular importance is that it is 

difficult to store. As a result, supply and demand for electricity must be matched on a real-time basis. This 

requirement has long been at odds with the signals that households receive. In particular, households 

typically face flat electricity tariffs, which do not provide incentives to conserve power at times when such 

behaviour would be most useful. In addition, households typically cannot observe the wholesale market price or 

the amount of electricity that they consume in real-time, so that they do not have the basis to make well-

informed decisions about their electricity consumption. 

New technologies are quickly changing both of these long-standing features of the electricity market. 

Digital (“smart”) electricity meters are replacing analogue meters in many regions of the world. Unlike 

analogue meters, digital meters record electricity consumption at a fine-grained interval, potentially 

enabling households to be exposed to prices that vary over time of day. Additionally, when paired with a 

dedicated feedback technology, smart meters can communicate electricity prices and electricity 

consumption in real time to households, which provides them with a better informational basis on which to 

make electricity consumption decisions. This report focuses on a particular type of real-time feedback 

technology, in-home displays (IHDs), which provide consumers with real-time information about 

electricity consumption, price and expenditures.  

Such high-quality information should increase the ability of the consumer to optimise decisions 

relating to electricity consumption. However, it is unclear how consumers will respond to the installation 

of IHDs. In particular, optimising consumers may respond by either increasing or decreasing electricity 

demand, depending on the nature of their perceptions of electricity consumption and price before the 

installation of the IHDs. Likewise, IHDs may make consumers more or less responsive to changes in 

electricity price, depending on how consumers’ pre-IHD beliefs reflected actual electricity prices. 

Moreover, the  ins ta l la t ion of  an IHD may also increase the attention that consumers devote to their 

electricity consumption, and cause changes in consumption as a result. Understanding how consumers 

respond to more information therefore rests more on empirical than on theoretical results. 

The empirical literature on the impact of real-time feedback via IHDs on electricity demand has 

produced mixed results. Early pilot programmes developed by electric utilities typically suggest that 

providing households with real-time feedback on electricity demand causes a substantial reduction in 

electricity consumption. However, these early studies often do not use methods that would be considered 

appropriate today, or they do not report enough information on methods, leading to doubts about their 

findings. More recent studies use high-resolution (e.g. hourly) data to compare electricity consumption 

from households with and without in-home displays, using either quasi-experimental or experimental 

research designs. These studies suggest that IHDs can induce meaningful reductions in electricity 

consumption in contexts where the price for electricity is high. However, there are few such high-quality 

studies, and most of those that have been conducted focus on particular contexts such that results may not 

necessarily generalise to a wider population. 

This report also provides a review of a recent study that sheds new light on the effect of real-time IHD 

feedback on consumer electricity demand. The study evaluates a programme that resulted in approximately 

7000 households in Ontario, Canada, being provided with an in-home electricity display. It uses a quasi-
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experimental approach to assess the impacts of real-time IHD feedback on household electricity demand, 

by leveraging the fact that IHDs are rolled out to households over a one-year period. This context enables a 

longitudinal approach to estimating the impact of IHD feedback, in which household electricity 

consumption with an IHD is compared to consumption in the same household before receipt of an IHD, 

controlling for trends experienced by other households whose IHD status does not change. 

Based on this approach, several important findings are reported. First, the receipt of an IHD results in 

a reduction in electricity demand of around 3% overall. This result suggests that either (a) households 

underestimated their expenditures on electricity prior to receiving an IHD, and the additional information 

caused them to reduce consumption, and/or (b) the receipt of the IHD caused electricity consumption to 

become more ‘visible’ to households, and led them to conserve electricity independently of the response to 

improvements in the quality of information. The results also suggest that household electricity 

conservation in response to real-time feedback provided via IHDs is concentrated in the autumn and winter 

heating seasons. The response by households is roughly uniform throughout the day, and does not appear 

to be caused bythe time-of-use pricing schedule.  

The study found that household electricity conservation in response to IHD feedback persists for at 

least five months following the receipt of the display. Although it is not possible to confidently identify the 

mechanisms by which households respond to the IHD with the data available in this study, this finding 

suggests that households respond to real-time feedback in part by adjusting thermostat settings downwards 

or investing in durable energy efficiency improvements that result in lower space heating demand. 
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1. INTRODUCTION
1
 

The market for electricity is evolving rapidly. Electricity generation is no longer uniquely the 

domain of large vertically integrated electricity firms, as it was for most of the last century. Instead, 

electricity is increasingly generated in a less centralised manner, by independent generators, sometimes in 

deregulated electricity markets. Electricity generation technologies are also rapidly changing, with 

renewable electricity sources becoming increasingly cost-competitive with fossil fuel generation. 

Consumers are obtaining the technologies required to generate electricity themselves in a decentralised 

manner, such as with rooftop solar, or the technologies to manage their electricity demand with much 

more flexibility than previously available, such as with home electricity storage and “smart” thermostats. 

These changes have important implications for electricity generation companies, electricity consumers, and 

the environment. 

This report focuses on a particular set of technologies that is part of the rapid changes taking 

place in the electricity market—the “smart” meter and associated feedback technologies in the residential 

sector. Smart meters record electricity consumption and also act as communication devices, relaying 

information on electricity consumption to the distribution utility, and also potentially providing similar 

information to the household. Smart meters can be paired with real-time feedback technologies to improve 

the communication of information about electricity consumption and price to the household. 

Paired with in-home feedback technologies, smart meters can have an important impact on the 

electricity market because of two specific features.
2
 First, smart meters enable the communication of real-

time information to consumers about both electricity consumption and price. In contrast, with a standard 

(analogue) electricity meter, consumers only find out their consumption of electricity when electricity bills 

arrive, i.e. usually at monthly or bi-monthly intervals. For this reason, smart meters improve information 

availability to residential households, and enable improved electricity consumption decision-making by 

households. Closely related to this point, smart meters and feedback technologies may make electricity 

consumption more salient to households and, thus, can directly encourage conservation. Second, smart 

meters enable time-varying electricity pricing. Economists have long advocated for time-varying 

wholesale prices to be passed on to consumers, arguing that the flat tariffs normally used in the residential 

sector suppress potentially cost-effective demand response (Borenstein et al., 2002). Because they are digital 

devices, smart meters can facilitate the implementation of virtually any type of tariff structure, including 

those that vary over time. In contrast, with a standard (analogue) electricity meter, implementing time-

varying rates is difficult or impossible. 

These two features of smart meters may have important impacts for electricity markets and the 

environment. In particular, by making consumers aware of their electricity consumption, smart meters and 

feedback technologies improve the ability of households to optimise their electricity consumption, 

potentially reducing electricity demand. Further, they may help make electricity consumption more salient to 

residential consumers, and promote electricity conservation directly as a result. These are behavioural 

avenues through which smart meters and feedback technologies can reduce electricity demand. In addition, 

                                                      
1
 Some of the research presented here was conducted by Steve Martin and the author of this report and is also reported 

in the paper by Martin and Rivers (2015). 

2
 This report focuses only on the direct impacts of smart meters on household electricity consumption. Smart meters 

also confer other benefits, such as improved ability by the electricity distribution company to detect 

electricity theft, improved ability to manage electricity flows on the electricity network, and reduced costs 

for electricity meter reading. These benefits do not accrue to the household directly, and are not the focus of 

this report. 
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smart meters enable consumers to conserve electricity when supply is constrained by facilitating dynamic 

electricity pricing. This is a market-based avenue through which smart meters can influence electricity 

demand. All of these mechanisms could have important environmental implications. 

Rollout of smart meters to residential customers is underway in many countries of the world, as 

shown in Table 1. In Canada and the United States, approximately half of all residential meters have been 

replaced by smart meters as of 2016. In the United Kingdom and France, the rollout of smart meters to 

households lags behind the rollout in North America. In Ontario, the focus of part of this report, the 

rollout of smart meters to residential customers was completed by 2010, making it an interesting case 

study for understanding the potential impacts of smart meters and associated feedback technologies on 

consumer electricity demand. 

Table 1. Residential smart meter rollout in selected countries and regions 

 

Region 

No. residential 

smart meters 

No. residential 

accounts 

Smart meter 

penetration 

 

Year 

France ≈1,500,000 ≈29,000,000 ≈5% 2016 

Germany ≈1,600,000 ≈40,000,000 ≈4% 2014 

Italy ≈26,000,000 ≈26,000,000 100% 2015 

Ontario, Canada ≈5,000,000 ≈5,000,000 100% 2016 

United Kingdom ≈3,500,000 ≈27,000,000 ≈13% 2016 

United States 57,107,785 131,864,192 ≈43% 2015 

Sources: France: metering.com, https://www.metering.com/reports/linky-smart-meter-enedis/; Germany: Zhou and Brown (2017); 
Italy: Uribe-Pérez et al. (2016); France, Italy, Germany (number of households): Eurostat (2016); Ontario: Office of the Auditor 
General of Ontario (2014); United Kingdom: Department for Business, Energy and Industrial Strategy (2016), Office for National 
Statistics (2016); United States: U.S. Energy Information Administration (2017). 

The objective of this report is aimed to explore the potential impact of real-time feedback based 

on smart meters on residential electricity demand. Section 2 provides background on smart meters, 

including describing the manner in which they can provide feedback to customers about electricity 

consumption and price, and the manner in which time-varying prices can be introduced under a smart 

metering system. Section 3 discusses how the impacts of smart meters and feedback technologies can be 

evaluated, using both experimental and observational methods. It also presents a literature review of prior 

studies focused on the impact of real-time feedback on residential electricity demand. Section 4 develops a 

simple model to explore how real-time feedback might affect residential electricity consumption. It shows 

that feedback could either increase or reduce electricity consumption, depending on the degree and type of 

perceptions held by the customer in the absence of information. Section 5 describes a case study in which 

real-time feedback was provided to residential customers in a quasi-random manner, in an electricity 

distribution area in Ontario, Canada. It evaluates the impact of real-time feedback on electricity 

consumption, explains how the effects of real-time feedback are determined, and shows how the impact of 

feedback varies by season, time of day, and outdoor temperature. Section 6 provides a number of 

concluding comments. 
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2. REAL-TIME FEEDBACK AND TIME-OF-USE ELECTRICITY PRICING 

Smart meters differ in two important ways from traditional analogue electricity meters. First, they 

record electricity consumption using a digital, rather than analogue, technology. Electricity consumption 

on smart meters is also recorded with a corresponding time stamp, indicating time of use with hourly or 

higher frequency. On an analogue meter, in contrast, it is not possible to know when electricity was 

consumed within a billing period. Second, smart meter infrastructure allows communication between the 

meter and the electricity distribution company. This eliminates the requirement for manual in-place meter 

reading that is associated with analogue meters. Most smart meters additionally allow communication 

between the smart meter and the household. Figure 1 summarises the key differences between conventional 

and smart metering technology. 

Figure 1. Comparison of conventional (analogue) metering infrastructure and smart (digital) metering 
infrastructure 

 Analogue meter Smart meter 

 

 

 

 

   Measure 

   Communication 

   Pricing 

Electricity over billing period 

None (manual reading) 

No variation within period 

Electricity per hour (with time stamp) 

Two-way communication 

Flexible 

 

These two differences between smart and conventional meters—regular recording of electricity 

consumption and communication ability—allow for important changes both in the way that electricity 

consumption is communicated to households, and in the way that electricity consumption is billed. The 

following sections discuss each of these potential changes. It is worth noting that when smart meters are 

adopted, households and their electricity distributors can make choices about using these features of 

smart meters or not. Upon adopting smart meters, certain jurisdictions and households have chosen not to 

change the way electricity is priced or to make use of feedback on household electricity consumption. 

2.1 Smart meters allow real-time feedback on household electricity consumption 

Like an analogue meter, a smart meter is installed outside the house, and does not typically 

display information on electricity consumption in an accessible, intuitive, or easy-to-read manner for the 

average household. On its own, then, a smart meter provides limited information to a household about 

electricity consumption. However, most smart meters include features to allow communication between 

the electricity meter and the household, typically using wireless technology. Using these features, or using 

near-real-time data relayed by the smart meter to the electricity distribution company, households can obtain 
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feedback on their electricity consumption.
3
 The provision of this information may encourage households to 

change electricity consumption behaviour, possibly inducing energy conservation. There are a number of 

technologies that have been adopted to provide households with real-time information on their electricity 

consumption, outlined below.
4
 

Text message or e-mail  

Irregular text messages or e-mail messages can be used to highlight to consumers unusual 

consumption or changes in prices. For example, Gleerup et al. (2010) analyse a feedback scheme in 

Denmark in which e-mails or SMS messages are sent to participants when electricity consumption deviates 

from average levels by a pre-specified amount, and find a 3% reduction in electricity demand as a result. 

Internet site or mobile application  

It is possible to display information in a useful graphical format by linking a mobile app or 

internet website to the distribution company repository of consumption data. For example, Schleich et al. 

(2013) analyse an Austrian field trial in which consumers were provided with access to a website that 

displayed useful information relating to electricity consumption (with a one-day lag). They find limited 

impact of website feedback on consumer electricity demand. 

In-home display 

In-home displays use a wireless or optical reader to display information from the smart meter 

in a convenient and accessible manner to the household. Typical in-home displays feature graphics that 

display electricity consumption and price over the day and month, as well as indicators showing the 

current price of electricity. For example, Houde et al. (2013) analyse a programme that provided Google 

employees with an in-home display and find that electricity consumption was reduced by about 5% for 

several weeks following the receipt of the device. 

2.2 Smart meters allow dynamic electricity pricing regimes 

Smart meters record electricity consumption on an hourly or higher frequency and recording occurs 

with a time stamp. As a result, smart meters enable the electricity distribution utility to use prices that 

change over the course of a day, or change from one day to the next.
5
 Changes in prices to reflect 

different costs of electricity provision over time are a market-based mechanism for encouraging energy 

conservation. There are a number of pricing schemes that are enabled through the use of smart meters. 

These schemes are described below and illustrated in Figure 2. 

Real-time pricing 

In a real-time pricing programme, residential consumers are exposed to the wholesale price of 

electricity. This can provide them with an incentive to conserve electricity during periods when demand is 

high or when supply is reduced. Real-time pricing is rarely applied for residential customers. Allcott 

                                                      
3
 While smart meters record electricity consumption on an hourly or higher frequency, they typically relay that 

information to the electric distribution company on a lower frequency, such as daily. 

4
 It is important to note that there have been a number of efforts to supply households with feedback on their 

electricity consumption that do not rely on real-time consumption information (e.g. Allcott, 2011b; 

Fischer, 2008). This document focuses on real-time feedback. 

5
 Prices that change over the course of a season are also possible with analogue meters. 
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(2011a) examines a case where selected Chicago consumers were exposed to real-time prices.
6
 He finds a 

reduction in peak-period consumption and a welfare gain for consumers on real-time prices. 

Figure 2. Types of dynamic pricing systems for electricity, illustrated over a hypothetical one week (168 hour) 
period 

 
Note: Each tariff type recovers a premium over the wholesale price to cover electricity transmission and distribution expenses. A flat 
tariff does not change between days or hours. The real-time price (rtp) is based on a fixed mark-up over the wholesale price. The 
time-of-use (tou) price charges one price for on-peak hours (here, illustrated as 8 am to 7 pm) and a lower price for off-peak hours 
(here, 7 pm to 8 am). The critical peak period price (cpp) increases the residential price by a significant multiple during period of 
system stress (here, illustrated as a three-times price multiple). 

Critical period pricing 

Under a critical period pricing tariff, customers pay a flat price for electricity except for during 

a certain number of “critical” periods during the year, when the consumer electricity rate increases 

substantially. These critical periods are times of particularly constrained supply, such as hot summer 

afternoons, when air conditioning demand peaks. The large increases in electricity price during a limited 

number of hours provide consumers with a substantial incentive to reduce demand during these periods. 

Jessoe and Rapson (2014) examine a critical peak period electricity scheme, and find that consumers indeed 

respond by reducing demand. 

Time-of-use pricing  

In a time-of-use pricing scheme, the consumer electricity tariff changes by a predictable amount 

at predictable periods during the day. For example, during the summer season, a utility might declare the 

hours of noon to 7 pm on weekdays as “peak” periods, in which the price of electricity is double the price 

in other periods. Time-of-use pricing obtains some of the benefit of real-time pricing without exposing 

consumers to the fluctuating wholesale price of electricity.  

                                                      
6
 In the case examined by Allcott (2011a), consumers were exposed to the day-ahead forecast of the wholesale 

price. 
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3. EVALUATING THE IMPACTS OF REAL-TIME FEEDBACK ON ELECTRICITY 

DEMAND 

3.1 Impact assessment methodologies 

A significant body of research has gone into establishing the effectiveness of demand 

management strategies, such as real-time feedback technologies and dynamic electricity pricing, in 

increasing electricity conservation. This section provides a brief discussion of the methods used to derive 

causal inferences about the effectiveness of these alternative demand management strategies in changing 

consumer electricity demand.
7
  

Two basic research designs are used to establish the impact of demand-side policy interventions in 

the electricity sector: randomised controlled trials and observational studies. In each case, the objective is 

to estimate the change in electricity demand due to an intervention. 

Box 1. Notation for impact evaluation of electricity conservation programs 

Some notation will be helpful in explaining the two types of research designs: 

 Ti is a dummy variable that indicates whether an individual is “treated,” where the treatment involves being 
subject to a different electricity tariff or being provided with a feedback technology. 

 Yi is the observed electricity consumption of person i. 

 Y
0

i indicates the potential electricity consumption of person i had he not been exposed to the treatment  
(Tit = 0), and 

 Y
1

i indicates the potential electricity consumption of person i had he been treated (Tit = 1). 

Randomised controlled trials 

Randomised control trials (RCTs) are increasingly used to assess the impact of conservation 

policies in the electricity sector – a number of RCTs are described in Section 3.2. The increased use of 

RCTs in the evaluation of relevant conservation policies is to some extent due to the more widespread use 

of smart meters, which allow for remote monitoring of changes in consumer behaviour. 

In a typical RCT in this sector, participants are recruited from the population of households 

served by the electricity distribution company.  Participants normally voluntarily self-select from the 

population, such that they may not be representative of the broader population.
8
 This raises potential 

concerns about the external validity of an RCT — the degree to which the results will be valid for a 

different population — since participants in the RCT may not be representative of the population at large. 

There are few instances reported in which participants in an electricity conservation RCT are randomly 

selected from the broader population.
9
 

Once households have been recruited to be participants in an RCT, they are randomly assigned to 

treatment and control groups. As is well understood, random assignment ensures that there is no 

systematic relationship between the observed or unobserved characteristics of respondents and their 

treatment status (Angrist and Pischke, 2008) — see Box 2 for more details. As a result, a simple 

                                                      
7
 A useful and general overview of issues associated with establishing causal inference is given in Angrist and 

Pischke (2008). 

8
 It is important to distinguish the non-random selection of participants into an RCT from the random assignment of 

treatment to participants, which distinguishes RCTs from other research designs. 

9
 One notable exception is Sexton et al. (1987), who randomly select participant households from the population 

(without asking for volunteers). Selected households were offered the possibility to withdraw from the 

program, but Sexton et al. (1987) report than “the actual refusal rate was negligible”. 
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comparison of electricity consumption between treated and untreated households is an unbiased estimator 

of the effect of the impact of the treatment on electricity consumption.
10

 The ease of drawing causal 

inferences has led to RCTs often being referred to as the “Gold Standard” for understanding the 

impact of interventions. In particular, the internal validity—the ability of a research design to recover 

an accurate estimate of the causal effect of treatment in the treated population—of well-designed and 

implemented RCTs is high. 

Box 2. Causal inference from RCTs 

The causal effect of the treatment on those who are treated (usually called the average treatment effect on the treated, 
or ATET) can be thought of as the expected difference in electricity consumption for a person i  who is exposed to the 
policy intervention (or “treated”), compared to what the same person would have consumed if that person had not been 
exposed to the same policy (had she been “untreated”): 
 

𝐴𝑇𝐸𝑇 = 𝐸[𝑌𝑖
1|𝑇𝑖 = 1] − 𝐸[𝑌𝑖

0|𝑇𝑖 = 1]. 
 

Clearly, however, it is impossible to observe the same person at the same time being both treated and untreated. This is 
sometimes referred to as the fundamental problem of causal inference. Instead, in practice, researchers compare the 
observed – rather than potential – consumption of treated individuals to that of untreated individuals (possibly the same 
individuals, but at a different time): [𝑌𝑖|𝑇𝑖 = 1] − 𝐸[𝑌𝑖|𝑇𝑖 = 0] .   
It is possible to decompose this expression to see how it relates to the average treatment effect: 

𝐸[𝑌𝑖|𝑇𝑖 = 1] − 𝐸[𝑌𝑖|𝑇𝑖 = 0] = 𝐸[𝑌𝑖
1|𝑇𝑖 = 1] − 𝐸[𝑌𝑖

0|𝑇𝑖 = 1] +  𝐸[𝑌𝑖
0|𝑇𝑖 = 1] − 𝐸[𝑌𝑖

0|𝑇𝑖 = 0]  

The observed difference in average electricity consumption between treated and untreated individuals is the sum of two 
components:  

 𝐸[𝑌𝑖
1|𝑇𝑖 = 1] − 𝐸[𝑌𝑖

0|𝑇𝑖 = 1]: the difference due to the treatment, i.e. the ATET, 

 𝐸[𝑌𝑖
0|𝑇𝑖 = 1] − 𝐸[𝑌𝑖

0|𝑇𝑖 = 0]: the difference in average electricity consumption between treated and untreated 

individuals which is not due to the treatment, or selection bias. 

In an RCT, treatment status is assigned by the experimenter and randomised across individuals. As such, there is no 
expected correlation between treatment status and individual characteristics, including pre-treatment electricity 

consumption. Formally, 𝐸[𝑌𝑖
0|𝑇𝑖 = 1] = 𝐸[𝑌𝑖

0|𝑇𝑖 = 0] implying that the expression above reduces to: 

𝐸[𝑌𝑖|𝑇𝑖 = 1] − 𝐸[𝑌𝑖|𝑇𝑖 = 0] = 𝐸[𝑌𝑖
1|𝑇𝑖 = 1] − 𝐸[𝑌𝑖

0|𝑇𝑖 = 1] 

In a randomised control trial, a comparison of electricity consumption between treated and untreated individuals is 
therefore an unbiased estimator of the effect of treatment both on treated individuals, and on the population at large, 
since these are randomly assigned and not different. The precision of the estimate can be improved by conditioning 
electricity consumption on observed household characteristics and/or on observed temporal demand shifters in a 
regression framework. 

Source: Angrist and Pischke, 2008. 

While most critiques of RCTs focus on external validity concerns relating to participant 

selection, there is another external validity concern that applies especially to RCTs known as the 

Hawthorne effect. The Hawthorne effect refers to the idea that participants in an experiment or other 

study change their behaviour as a result of being observed.
11

 In a recent study of the potential for 

Hawthorne effects to arise in contexts related to electricity consumption, Schwartz et al. (2013) recruited 

households to a study and found that household electricity consumption falls by almost 3 percent even 

                                                      
10

 In practice, estimates of the impact of treatment on electricity consumption from an RCT typically use a 

regression-based approach which controls for factors other than treatment status. This can help to 

improve the precision of the impact of the treatment on electricity consumption. 

11
 The Hawthorne effect derives its name from experiments relating indoor lighting to worker productivity 

conducted during the 1920s at the Western Electric Company’s Hawthorne plant. Initial studies suggested 

that observed changes in worker productivity were not due to lighting, but instead due to the workers 

being observed. Subsequent studies using the same data have raised methodological issues that cast some 

doubt on this interpretation (Schwartz et al., 2013). 
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without any intervention aimed at promoting energy conservation, consistent with the idea of a Hawthorne 

effect. This should lead to some scepticism about the results of studies in which households are informed 

that they are participants in a study, as is the case in many of the studies that are described in the following 

section. 

Observational studies 

In an observational study, the treatment status of households is not selected by the analyst. Instead, 

household treatment is imposed by some other factor—either a choice by the household itself, by the 

policy maker or, more commonly in this context, by the electricity distribution company. This raises the 

possibility that household treatment status is correlated with observable or unobservable characteristics of the 

household, or with other observable or unobservable changes over time. As explained in Box 3, this can 

make it difficult to draw credible causal inference about the impact of treatment on electricity consumption 

using observable data. 

Box 3. Causal inference from observational studies 

In an observational study, the analyst is not in control of the treatment status of households or individuals, and as a 
result they are typically not assigned to treatment randomly. This raises the possibility of selection bias, whereby the 
observed difference in electricity consumption between treated and untreated individuals is related to pre-existing 

differences between these two groups. Formally, the selection bias term, defined in Box 2 as 𝐸[𝑌𝑖
0|𝑇𝑖 = 1] −

𝐸[𝑌𝑖
0|𝑇𝑖 = 0],  may not be equal to zero. To draw credible causal estimates from observational studies, it is important that 

the analyst provides evidence to support the assumption that there is no selection bias, i.e. that 𝐸[𝑌𝑖
0|𝑇𝑖 = 1] =

𝐸[𝑌𝑖
0|𝑇𝑖 = 0]. This guarantees that the average electricity consumption of the treated and untreated group is comparable 

prior to the introduction of the policy intervention. 

Several empirical approaches have been used in an attempt to provide valid causal inference 

despite these potential problems (Greenstone and Gayer, 2009). These alternative methods are not 

systematically reviewed here; Angrist and Pischke (2008) provide a thorough discussion. In any case 

though, since observing the same household at the same time in both treatment and control states is 

impossible, estimating causal effects from an observational study rests on supporting evidence and the 

assumption that treated and control households are equivalent, after controlling for observable factors. 

3.2 Findings from the literature on the effects of real-time feedback on electricity demand 

This section briefly reviews the literature on the relationship between real-time feedback and 

consumer electricity demand, which mostly focuses on the residential sector. A more detailed summary of 

individual papers is provided in Appendix A. For a recent review of real-time pricing studies, see Faruqui 

and Sergici (2010). 

Delmas et al. (2013) conduct a meta-analysis of 59 studies across multiple disciplines in the 

academic literature, all of which use RCTs to estimate the impact of information provision on electricity 

consumption. The study covers a wide variety of behavioural interventions that affect electricity demand, 

including real-time feedback, social norm comparisons, delayed feedback, audits, and other interventions. 

The results of the meta-analysis suggest that real-time feedback causes a reduction in electricity 

consumption of about 11 percent, on average. However, the authors caution that estimates of the effects of 

feedback are inflated in poor quality studies (for example, those that do not control for weather or other 

confounding factors). Across all types of feedback, they find that the treatment effect in high quality 

studies (which represent only a small fraction of all studies) is only about one quarter as large as the 

treatment effect for all studies. However, Delmas et al. (2013) neither provide an estimate of the effect of 

real-time pricing across high-quality studies in their data set, nor clarify whether they consider any of the 

real-time feedback studies in their survey to be high quality. 
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Faruqui et al. (2010) summarise findings from several pilot experiments using real-time 

electricity feedback, most of which were published in non-peer-reviewed outlets. The pilots use a number 

of different interventions, including different types of IHD, different types of payment for electricity, and 

different electricity tariffs, making it somewhat difficult to compare across studies. Faruqui et al. (2010) 

report that providing real-time feedback through an IHD to consumers is associated with a reduction in 

electricity demand of 3 to 13 percent. However, some of the reviewed pilot projects use very small 

samples, and the methods used to estimate the treatment effect and design the experiment are not clearly 

presented in the paper (owing to the large number of interventions surveyed), so it is difficult to ascertain 

the validity of the results. 

In the last few years, several high-quality studies have been published that examine the effect of 

real-time feedback on consumer electricity demand. Gans et al. (2013) use a quasi-experimental approach 

based on the roll-out of smart meters with real-time feedback to a subset of Northern Irish households for 

this purpose. The context they examine, in which customers pre-pay for electricity and experience some of 

the highest electricity prices in Europe, is likely to produce large conservation impacts. They find that real-

time feedback generates a large (11-17%) reduction in electricity consumption for treated households, 

which is sustained over several years. It is emphasised that these large impacts are likely context-specific. 

Houde et al. (2013) report on a randomised controlled trial, in which real-time feedback on 

electricity consumption – with an IHD – was provided to a randomly assigned group of volunteering 

Google employees. They report a 5% reduction in electricity consumption due to the provision of an IHD, 

but find that the effect does not persist more than a few weeks. Again, the particular context of the study 

(Google employees) makes it difficult to understand how IHDs might affect consumption in a broader 

population. 

Jessoe and Rapson (2014) examine the impact of providing an IHD in a context in which house- 

holds are also exposed to critical peak period pricing (in which prices increase by 2-6 times for several 

hours at a time). They find that households with an IHD are significantly more responsive to critical peak 

prices than other households. 

Harding and Lamarche (2016) analyse how the provision of real-time feedback technologies 

impacts consumer response to time-of-use (TOU) pricing. They find that households with IHDs do not 

significantly alter their profile of hourly electricity consumption compared to households without them in 

response to modest price changes. 

In sum, the existing literature appears to consist of a fairly large number of studies of questionable 

quality, which finds varying but often large impacts of real-time feedback on electricity demand. More 

recently, several high quality studies have been produced, but while the internal validity of these studies 

appears to be high, it is not clear how well the results from these studies will transfer to other contexts 

because most have used rather idiosyncratic populations or treatments. As a result, there remains a relatively 

significant gap in the understanding of how real-time feedback affects electricity consumption. 
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4. ANALYTICAL FRAMEWORK 

A simple model of consumer electricity demand provides general insights about the potential role 

of electricity feedback technologies. The model in this section assumes that consumers optimise electricity 

consumption decisions in response to perceived prices. As a result, it does not consider non-optimising 

responses, which could form part of the consumer response to IHDs. For example, if IHDs cause 

electricity consumption to become more ‘visible’ to the household, households may respond by 

conserving electricity independently of price changes. This response is not accounted in the model 

presented here. The model is static, which helps to capture the important features of the consumer 

problem related to feedback technologies. The model is based on a representative consumer, who chooses 

how much electricity and other goods to consume. However, since consumers do not consume electricity 

directly, but only as a result of the services it provides, electricity does not enter the consumer utility 

function directly. In the model, consumers choose between electricity services st and a generic other good 

x (the numeraire, with a price of one): 

𝑈 = 𝑈(𝑥, 𝑠𝑡). 

Electricity services are differentiated according to the time they are consumed, t. For simplicity, the model 

considers a single energy service (differentiated by time), although the model could be easily extended 

to accommodate the more realistic scenario in which the consumer consumes multiple energy services. 

The consumer maximises utility subject to two constraints: 

𝑠𝑡 = 𝜂𝑒𝑡, 

𝑀 = 𝑥 + ∑ 𝑝𝑡𝑒𝑡
𝑇
𝑡=1 . 

The first constraint relates the demand for energy services (such as lighting, heating, refrigeration) to the 

consumption of electricity. The parameter 𝜂 reflects the energy efficiency of the electrical device. For 

example, an efficient LED lightbulb would have a larger value of 𝜂 than an incandescent lightbulb that 

delivered the same light output. Likewise, a better insulated house would have a larger value of 𝜂 than a 

less well insulated house, such that a given level of heating service could be provided with less energy input. 

The second constraint is the consumer budget constraint, which ensures that total expenditures are 

equal to income (M). The constraint allows the price of electricity to vary over time. 

With perfect information, the household optimises spending on electricity services as a function of 

prices, income, and the efficiency of the energy service technology. The optimal level of energy services is 

given then by the expression: 

𝑠𝑡
∗ = 𝑠𝑡

∗(𝜂, 𝑝1, … , 𝑝𝑇 , 𝑀), 

where the asterisk indicates that this is the solution of the consumer maximisation problem. In 

practice, most consumers do not have perfect information relating to the consumption of electricity. Notably, 

most consumers likely have incomplete information about the relationship between the demand for energy 

services and the actual quantity of electricity consumed. Concretely, this means that they are unaware of 

how much electricity is required to power a given appliance. This is reflected in this model by the 
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parameter 𝜂. In addition to this uncertainty, it is likely that most consumers are imperfectly informed 

about the price they face for electricity. As a result, consumers make decisions with imperfect information 

about these parameters. 

A tilde is used to represent a parameter for which the consumer has imperfect information, 

such that consumer electric service demand under imperfect information is given by: 

�̃�𝑡
∗ = 𝑠𝑡

∗(�̃�, �̃�1, … , �̃�𝑇 , 𝑀) 

The difference between �̃�𝑡
∗ and 𝑠𝑡

∗ reflects the impact of imperfect information on consumer electricity 

demand. Depending on other sources of market failures that are present, this consumer misoptimisation is 

likely to carry a welfare cost. Figure 3 illustrates consumer misoptimisation as a result of imperfect 

information. In the figure, the time subscript for electricity consumption is eliminated, such that there are 

only two commodities consumed by the consumer—electricity services and other goods. Under perfect 

information, the consumer is able to choose the consumption of energy services and other goods to 

maximise utility. With imperfect information, the consumer misperceives the electricity price and/or the 

efficiency of electricity service provision (note that in this model, misperceptions about either of these 

values have identical effects). Importantly, this can result in electricity service demand (and thus 

electricity demand) that is either higher than or lower than optimal, depending on the direction of 

misperceptions about price and efficiency. 

Figure 3. Consumer utility maximisation under perfect vs. imperfect information 

 

The consumer utility function is defined over energy services (s) and other goods (x). With perfect 

information over prices and efficiency, the consumer chooses the bundle (𝑠∗, 𝑥∗). With imperfect 

information, the consumer chooses the bundle (�̃�∗, �̃�∗).  
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The aim of providing real-time feedback on electricity consumption is to reduce the information 

imperfection and allow the consumer to better optimise over electricity consumption decisions. In 

particular, most real-time feedback technologies present the consumer with information about the price of 

electricity, reducing uncertainty over this aspect of the decision. In addition, real-time electricity feedback 

technologies provide information about real-time electricity consumption. With multiple energy service 

technologies, this does not completely resolve uncertainty about 𝜂, but it can narrow the range of 

uncertainty. Some feedback technologies do provide appliance-specific information about electricity 

consumption, which generates perfect information about 𝜂. 

 

Smart electricity meters allow for the introduction of time-variant pricing such as dynamic 

pricing, critical period pricing, or time-of-use pricing, and it is important to consider the interaction of 

feedback technologies with these alternative pricing strategies. In particular, consider the response of a 

perfectly informed consumer to a change in the price of electricity at some time s, assuming that efficiency 

remains unaffected by the price change: 

𝜕�̃�𝑡

𝜕𝑝𝑠
= 𝜁𝑡𝑠 =

1

𝜂

𝜕�̃�𝑡

𝜕𝑝𝑠
 

It is possible to contrast this response with the effect of the same price change on an imperfectly- 

informed consumer. To do so, it is necessary to impose a particular structure on the uncertainty of the 

consumer with regard to the price of electricity. Here, it is assumed that the consumer knows the price of 

electricity with some error: �̃�𝑡 = 𝛿𝑡𝑝𝑡. If the error 𝛿𝑡  is greater than one, the consumer perceives electricity 

prices to be higher than they actually are, whereas if the error is smaller than one, the consumer perceives 

electricity prices to be lower than they actually are. As a result, the change in demand for an imperfectly 

informed consumer following a change in the price of electricity at time t is: 

𝜕�̃�𝑡

𝜕𝑝𝑠
= 𝛿𝑡𝜁𝑡𝑠 

With this error structure, the responsiveness of the electricity consumer to a change in price can be either 

lower or greater than the responsiveness of a perfectly informed consumer. In particular, an electricity 

consumer that systematically believes electricity prices are higher than they actually are will over-respond 

to a change in electricity prices, and vice versa. However, alternative structures of the function for the 

perception of electricity prices result in different predictions. For example, an error structure �̃�𝑡 = 𝑝𝑡 + 𝛿𝑡
𝐴 

results in an imperfectly informed consumer that responds identically to a price change with a perfectly 

informed consumer (here, 𝛿𝐴 is an additive error term). In contrast, a consumer that is completely 

misinformed about electricity prices, such that �̃�𝑡 = 𝛿𝑡
𝐶  will not respond at all to a change in electricity 

prices (here, 𝛿𝐶 reflects a belief about electricity prices that is independent of actual prices). 

Once again, the role of electricity feedback technologies is to provide improved information to 

the consumer, in part about electricity prices. Depending on the type and degree of misperception of 

energy prices by the consumer, the provision of feedback technologies can result in more or less price 

responsiveness by consumers. 
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5. A CASE STUDY—MEASURING THE EFFECT OF FEEDBACK TECHNOLOGIES IN 

ONTARIO, CANADA 

This section presents a case study on the implementation of time-of-use electricity rates and in- 

home real-time electricity feedback technologies. The results and analysis presented in this section are 

based on the paper by Martin and Rivers (2015), which provides a more detailed discussion. 

The case study presents an evaluation of a natural experiment in which in-home electricity 

displays are rolled out quasi-randomly to about 7000 households served by a electricity distribution 

company in Ontario, Canada. This section first describes the context in which the programme was offered. 

It then describes the empirical approach used for understanding the causal effect of real-time feedback on 

household electricity consumption. Finally, it presents the results of the analysis. 

5.1 Context 

Households within the service area of an Eastern Ontario local electric distribution company 

(EDC) were offered the opportunity to participate in peaksaverPLUS, a demand response programme. 

Upon agreeing to participate in the programme, the EDC activates a device on the home’s electric hot 

water heater that allows the utility to remotely reduce the electricity consumption of the water heater 

during certain high-demand periods of the year (for up to four hours at a time and only between May and 

October).
12

 

It is important to emphasise that the pre-condition for programme participation is ownership of an 

electric hot water heater. Since there is a very strong correlation between owning an electric hot water 

heater and using electricity as the primary space heating energy source (i.e. baseboard heaters), it is likely 

that the vast majority of the households in the sample primarily use electricity for both space and hot water 

heating.
13

 The effect of real-time feedback on electricity consumption shown estimated in the report should 

therefore be interpreted as the effect of feedback on households with electric heat and hot water. In 

addition, it is important to emphasize that households that participate in the program are not randomly 

drawn from the population, but instead select into the demand response program. The statistical 

implications of this selection are addressed below, but here it is important to emphasize that the results 

obtained in this paper reflect the subset of households with electric water heaters that select into a demand 

response program. It is not clear how generalizable the results are to the full population, since demographic 

information on households was not available for this study. 

In-home display 

In return for participating in the demand response programme, participating households received 

an in-home real-time electricity display (IHD). The IHD is wirelessly connected to the house’s digital 

electricity meter (all Ontario households have been converted from analogue to digital electricity meters). 

It displays, in real time, the power consumption by the household in physical units (in kW), the current 

retail electricity price (in $/kWh), and the implied current expenditure on electricity (in $/day). It also 

                                                      
12

 For a household to be eligible for the programme it must have an electric hot water heater. During the two-year 

period covered by the data, the utility only implemented load control events for two four-hour periods. 

Because this report focuses on the response to real-time feedback and not the response to the load 

control interventions, days on which loads are controlled are removed from the sample. Load control 

events were declared by the Ontario Power Authority on June 24 and July 16, 2013, from 2 pm to 6 pm. 

13
 Using a separate data set—the US Residential Energy Consumption Survey—shows that single family households 

with electric hot water heaters have roughly an 80% probability of also using electricity for space heat. 
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shows the consumption of electricity over the previous 24 hours as well as over the previous month. 

Additionally, the IHD is equipped with an LED display, which glows a different colour depending on the 

current electricity price (e.g., green is off-peak; yellow is mid-peak; red is on-peak). Figure 4 is a picture of 

the IHD used in this study. 

Figure 4. In-home electricity display used in the field experiment 

  

Source: Aztech. 
Note: Two of the different displays possible are shown. The top LED bar glows a different colour depending on the current electricity 
pricing period. 

The IHDs were sent from the utility by mail to each participating household, with instructions for 

activation. The utility had already pre-paired each IHD with the electric meter at the residence so that upon 

receiving the IHD the household could activate the device simply by plugging it in to a standard electrical 

outlet (information on electricity consumption is then transferred wirelessly from the digital electricity 

meter to the IHD). The data indicates the date that the device was couriered to the customer, and this date is 

used as the start of the “treatment effect” associated with the IHD. It is important to note that there is no way 

of knowing if or when the consumer actually installs the IHD, and so the effect that estimated throughout 

the report is an intent-to-treat effect, rather than a treatment-on-the-treated effect. The intent-to-treat effect is 

a lower bound on the treatment-on-the-treated effect. 

Time-of-use electricity prices 

In the Electricity Restructuring Act, 2004, the Ontario Energy Board (OEB) was mandated to 

implement a regulated price plan that included a TOU pricing structure in order to more accurately convey 

the real costs of generation to consumers, and to encourage customers to shift demand away from peak 

periods. It is one of the only jurisdictions in the world (the other is Italy) to implement smart meters for all 

residential customers as well as an associated TOU pricing plan (Faruqui and Lessem, 2014). The roll-out 

of the smart meters and implementation of the TOU pricing plan were complete prior to the beginning of 

the period covered by this study.
14

 

                                                      
14

 See www.ontarioenergyboard.ca/OEB/Industry/Regulatory+Proceedings/Policy+Initiatives+and+Consultations/S

mart+Metering+Initiative+(SMI)/Smart+Meter+Deployment+Reporting. Roll out of smart meters to 

Ontario residential customers was monitored by the Ontario Energy Board in monthly progress reports 

until June of 2012, at which point 99% of eligible customers had smart meters installed. Some Electric 

Distribution Companies in Ontario implemented time of use pricing as early as 2009, and all EDCs had 

implemented time of use pricing by 2012. This study uses data from the period September 2012 to 2014. 

http://www.ontarioenergyboard.ca/OEB/Industry/Regulatory+Proceedings/Policy+Initiatives+and+Consultations/Smart+Metering+Initiative+(SMI)/Smart+Meter+Deployment+Reporting
http://www.ontarioenergyboard.ca/OEB/Industry/Regulatory+Proceedings/Policy+Initiatives+and+Consultations/Smart+Metering+Initiative+(SMI)/Smart+Meter+Deployment+Reporting
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Ontario’s TOU pricing structure divides each hour into one of three blocks representing off- 

peak, mid-peak, or on-peak periods. Weekends and holidays are off-peak periods, as are the hours from 

7pm to 7am each weekday. In the summer, hours from 7 am to 11 am and 5 pm to 7 pm are mid-peak, 

while hours from 11 am to 5 pm are on-peak.
15 

In the winter, the daytime blocks are switched, such that 

peak periods are during the morning and evening, while the mid-peak period is from 11 am to 5 pm. The 

weekday time of use prices as of September 2015 are shown in Figure 5. 

Figure 5. Weekday time of use pricing periods by hour of the day in Ontario 

  

Note: Prices are for September 2015. The prices shown are for electricity generation only, and do not cover other components 
of the electricity bill related to e.g. transmission and delivery. 

Data source: Independent Electricity System Operator, Ontario 

The OEB adjusts TOU prices every six months in response to changes in electricity load as well as the 

profile of electricity generators in the province. Figure 6 shows the prices for each block observed in the 

study period (all prices are deflated by the Ontario Consumer Price Index). Real electricity prices have 

been trending upwards in Ontario during the study period. The ratio of peak/off-peak prices has changed 

slightly during the study period, but has remained between about 1.5 and 2.
16

 

                                                      
15

 Summer is defined as the months from May to October. 

16
 As in most utilities, the cost of the electricity commodity is just one component of the electricity bill received by the 

customer. Customers also pay a charge for delivery of electricity, as well as a regulatory charge, debt 

retirement charge, and a service charge. Some of these additional charges scale with usage, while others 

are fixed. In total, the all-in electricity price varies less over price blocks than the electricity commodity 

charge. Figure 5 illustrates the electricity commodity charge only. 
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Figure 6. Time of use prices during the study period 

 
Note: Prices are corrected for inflation using the Ontario Consumer Price Index. The prices shown are for electricity generation only, 
and do not cover other components of the electricity bill related to e.g. transmission and delivery. 

Data source: Independent Electricity System Operator, Ontario 

5.2 Research design 

The impact of IHDs on electricity consumption is estimated by making use of the staged roll-out 

of IHDs to electricity consumers. In particular, the impact of the IHD on electricity consumption is 

determined by comparing a household that has just received an IHD with the same household just before 

receipt of the IHD, and controlling for unobserved confounders using households that are just about to 

receive an IHD as a control group. Both of these households are programme participants, and so are likely 

similar in important respects (at minimum, both have electric hot water heaters, and likely have electric 

space heaters, for reasons discussed in the prior section). 

The research design imposes the assumption that households that are enrolled in the IHD pro- 

gram early in the year are equivalent to those that are enrolled in the programme later in the year. The 

identification approach might be compromised if these two types of households are significantly different. 

There are two reasons to think that the assumption is likely to be valid. First, although the roll-out of IHDs 

is long enough to exploit it for empirical purposes, from a household’s perspective it is still relatively 

short; there is no reason to think that there is a significant difference between a household that enrols in a 

demand response programme a few months before another household. Second, the phased roll-out was in 

part a response to resource constraints at the utility and this provides a source of exogenous variation in 

adoption date that is exploited in the analysis. 

In addition to these qualitative arguments that suggest the timing of the roll-out is exogenous, it is 

possible to provide quantitative evidence. To do this, observations of electricity consumption prior to any 

households receiving an IHD are used (IHD roll-out began in January 2013, and the data on electricity 

consumption starts in September 2012).  A comparison between pre-programme electricity consumption in 

these households is used to determine if there is any difference between early adopting and late adopting 
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households that could contaminate the estimated treatment effects. To operationalise this, the data are split 

into two groups: early adopters and late adopters. Households are split according the median date of 

adoption (August 21, 2013). Pre-programme electricity consumption in early and later adopters is then 

compared. Figure 7 shows the results of this comparison graphically. Daily electricity consumption is 

clearly very similar between early- adopting and late-adopting households in the pre-treatment period, 

following the qualitative arguments above. Additional evidence on this point comes from a regression of 

pre-programme electricity consumption on the date of IHD receipt. There is no statistical relationship 

between these two variables. Martin and Rivers (2015) provide more formal statistical evidence that pre-

treatment consumption in early-adopting and late-adopting households is identical. 

5.3 Findings 

The main finding of the analysis is that households reduce electricity demand by an average of 

about 3% once they receive an in-home display (the result is “statistically significantly” different from zero at 

conventional significance levels). As described in the following, this reduction in electricity demand is 

maintained for at least several months following receipt of the device. The result is estimated based on a 

comparison of daily household electricity consumption within the same household before and after 

receiving an IHD, and controlling for temporal shifts in electricity consumption experienced by all 

households in the small service area of the utility, for example due to holidays or changes in weather. The 

average effect is similar when controlling for household-by season fixed effects, and also when hourly rather 

than daily data is employed for estimation. Tables showing this result and others in this section are provided 

in the appendix, and more detail is available in Martin and Rivers (2015). 

Figure 7. Density of daily electricity consumption in pre-treatment period (September to December, 2012) for 
participating households 

Average power consumption (kW) 

 

Note: The ‘early’ line includes households that received an IHD prior to August 13, 2013, and the ‘late’ line includes households that 
received an IHD after August 13, 2013. 
Data source: Author’s calculations. 
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Box 4. Quasi-experimental research design 

To estimate the effect of IHDs on the average consumption of electricity (Yit), Martin and Rivers (2015) conduct a 
regression of the log of electricity consumption on a dummy variable that indicates that the household has received an 
IHD, as follows: 

log(𝑌𝑖𝑡) = 𝛼 + 𝛽𝐼𝐻𝐷𝑖𝑡 + 𝜇𝑖 + 𝜆𝑡 + 𝜖𝑖𝑡 

 
The IHD dummy variable takes on a value of one on all days on and subsequent to the date that the household 
receives the IHD, and takes on a value of zero on all days prior to receipt of the IHD. The specification includes 
household fixed effects, 𝜇𝑖, to account for unobserved and observed heterogeneity between households. Given the 

bias that can be induced from not properly controlling for demographic effects (Delmas et al., 2013), it is important to 
control for household effects. The regression also includes time fixed effects 𝜆𝑡, to account for temporal shocks that 

affect electricity demand. There are roughly 2 years of hourly data (2 years × 8760 hours per year ≈ 17 500 hours) 
reflecting about 17 500 hours, so there are roughly this number of time dummy variables in the model. All households 
in the data are in the service area of a single EDC (with a small service area of about 60 km

2
) and so experience the 

same average weather and other time-varying disturbances. Because electricity prices change for all households 
simultaneously, the time fixed effects also absorb any impact of changing electricity prices on average household 
electricity demand. The coefficient β then indicates the difference in average log electricity consumption conditional on 
being treated with an IHD. 
 
As described above, the identification of the β coefficient leverages the quasi-experimental roll-out of the IHDs to 
consumers. Statistical evidence supporting the exogeneity of the roll-out is described above, and additional evidence is 
provided in Martin and Rivers (2015). To ensure validity of the estimates, only households that eventually receive an 
IHD are included in the estimation. 
 
In addition this this base specification, Martin and Rivers (2015) also reports on the results of specifications in which 
household-by-season fixed effects are included, to account for potential seasonal heterogeneity in household 
consumption that varies by household and might be correlated with IHD adoption. Including these additional fixed 
effects does not significantly alter the overall results. 
 
This section also reports on the results of several specifications in which the IHD dummy variable is interacted with 
time-of-day dummy variables, with outdoor temperature, with electricity prices, and with other variables, to understand 
how the effect of having an IHD varies over various margins. 
 
In all instances, standard errors are clustered at the household level.  This accommodates potential correlation in 
electricity consumption over time within a household. 
 

Sources: Delmas et al. (2013); Martin and Rivers (2015).  

Temporal variation in household response 

The hourly metering data produced by smart meters in Ontario allows for the possibility of 

breaking down the response by hour of the day. This is done in Figure 8. The figure indicates that for 

most hours of the day, the hourly effect of an IHD is very similar to the average effect over all hours of 

the day (indicated by the dashed red line). In fact, the hourly effect is only statistically different from the 

average effect for two hours of the day: the hour up to 7 am and the hour up to 7 pm. This is notable for 

two reasons. First, the stability in the effect across all hours of the day suggests that households are not 

dynamically responding to real-time information over all hours in the day, but rather are permanently 

adjusting behaviour in a way that generates a relatively uniform response across hours of the day. Second, 

the result provides preliminary evidence that changes in the time-of-use price within a day are not driving 

major changes in the response to the IHD (a point explored further below). In particular, the largest 

reduction in electricity demand is in the hour leading up to 7 am, which is on off-peak price. The smallest 

response is in the hour leading up to 7 pm, which is on mid-peak or on-peak price, depending on the 

season. 
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Figure 8. Change in hourly electricity consumption due to receipt of in-home electricity display 

 
Note: Hours reflect all consumption up to that hour; so hour 8 is electricity consumption from 7:01am to 8:00 am, for example. Dashed 
black lines delineate pricing blocks. The dashed red line indicates the average effect over all hours of the day. 
Data source: Author’s calculations. 

While Figure 8 breaks down the response according to the hour of the day, Figure 9 breaks down 

the response according to season of the year. Unlike the relatively flat response over the course of the day, 

Figure 9 shows that there is a distinctive seasonal effect of the IHD on consumption. In particular, during 

the spring and summer months, there is a small and statistically insignificant impact of the IHD on 

electricity consumption. In contrast, during the winter and fall heating seasons, the IHD causes a roughly 4 

percent reduction in the demand for electricity. This is suggestive evidence that households respond to the 

IHD in part by reducing the demand for space heating. Further evidence on this point is provided in the 

following section. 

Figure 9. Results by quarter of the year with 95% confidence interval 

 
Note: Quarter 1 is January-March and so on. The dashed red line indicates the average effect over all seasons. 
Data source: Author’s calculations. 
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Household response by outdoor temperature 

To provide additional evidence on the mechanism through which households are responding to 

the IHD, Figure 10 conducts a regression in which the hourly outdoor temperature is interacted with the 

IHD dummy variable. Temperature is divided into equally-sized bins that span the range of temperatures in 

the data set, in order to enable visualisation of the potentially non-linear relationship between outdoor 

temperature and the impact of the IHD. This enables the possibility of establishing whether the presence of 

an IHD produces a differential response at different outdoor temperatures, and helps to establish the 

mechanism by which households respond to the IHD. 

Figure 10. Treatment effect by temperature bin (hourly), 90% confidence intervals 

 

Note: The dashed red line indicates the average effect over all temperatures. 
Data source: Author’s calculations. 

The figure shows that when the outdoor temperature is low, the presence of an IHD results in a 

significant reduction in electricity consumption. In particular, at an outdoor temperature of -8°C or below, 

household electricity consumption is reduced by 4 to 6 percent due to the presence of an IHD (with the 

larger reduction at lower temperatures). The effect of the IHD on electricity consumption declines near-

monotonically as temperature increases until the outdoor temperature is between 2°C and 7°C, at which 

point the IHD appears to have no effect on electricity demand. At temperatures above 17°C, there is weak 

evidence that the IHD reduces household electricity demand.  

The figure provides additional evidence that households respond to receiving an IHD by 

adjusting thermostat setpoint. When temperatures are extremely cold, suggesting a large heating load, the 

effect of the IHD is larger. Similarly, when temperatures are extremely hot, there is some evidence that 

households with an IHD consume less energy than households without. In contrast, when temperatures are 

less extreme, such that there is little requirement for heating or cooling, the IHD does not appear to have 

any effect on electricity consumption. 
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It is possible to make an estimate of the shift in thermostat setpoint that would give rise to the 

effects observed in this study. To provide an estimate, the HOT2000 building simulation model that is 

developed by Natural Resources Canada is used to simulate household heating requirements for different 

indoor temperature setpoints and outdoor temperatures. Based on model simulations with different indoor 

setpoints and based on weather in Ontario, a 1°C reduction in the indoor temperature setpoint is estimated 

to reduce building energy consumption by about 4 percent during the heating season. The US Department 

of Energy suggests a reduction of 0.6 degrees Celsius (1 degree Fahrenheit) is sufficient to reduce energy 

consumption by about 3 percent.
17

 These two studies suggest that a possible interpretation of the findings 

here is that households responded to an IHD by reducing the thermostat setpoint by about 1°C or slightly 

less. 

Persistence of household response 

To establish whether IHDs can be (part of) a cost effective strategy to encourage households to 

reduce their electricity consumption, it is critical to know whether the impact of the IHD on consumption is 

transitory or persistent. Prior studies have shed some light on this (e.g. Gans et al., 2013; Houde et al. 

2013), but many have not followed households for sufficiently long periods to observe whether the 

response is transitory or persistent. 

Figure 11. Persistence of IHD treatment effect by week of treatment, 90% confidence intervals 

 

Note: The dashed red line indicates the average effect over all weeks.    
Data source: Author’s calculations 

                                                      
17

 See http://energy.gov/energysaver/thermostats. 

http://energy.gov/energysaver/thermostats
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Figure 11 presents the results of a regression in which the IHD treatment dummy is interacted with a 

variable indicating the number of weeks since the IHD has been received. As above, bins are used to 

enable the identification of a possibly non-linear response. Figure 11 shows that the effect of the IHD 

appears to increase over time, from roughly 2 percent upon initial receipt to around 4 percent after 

households have had the IHD for several months. Importantly, the effect of the IHD on electricity 

consumption does not appear to be transitory, but rather appears to increase fairly steadily over the five-

month period over which households are observed following receipt of the IHD. Although it is again not 

possible to pin down the precise mechanism explaining this response, it is plausibly linked to the 

increased salience of electricity consumption under IHD adoption, leading consumers to shift habits in a 

persistent manner, for example by acquiring more energy efficient appliances or by permanently adjusting 

thermostat setpoints. 

Real-time feedback and time of use electricity prices 

The programme under study is in Ontario, a province with time-of-use electricity pricing for 

nearly all residential customers. Time-of-use prices in Ontario are provided in Figures 5 and 6. During the 

period covered by the data, on-peak prices for electricity were about twice as high as off-peak prices. 

During the period covered by the data and the rollout of IHDs to customers, the time-of-use tariff for 

residential households changed twice: once in Spring 2013 when it switched from the winter to summer 

tariff structure, and once in Fall 2013 when it switched from summer to winter structure. At each switch, 

prices for electricity were also increased for each block of electricity. It is possible to use these two tariff 

changes to identify the impact of changes in electricity prices on electricity consumption, both for 

households with an IHD as well as for households that have yet to receive an IHD. As explained in Section 

3 above, it is theoretically not clear whether households with real-time feedback should respond more or 

less to a price change than households without real-time feedback. 

For households without an IHD, the estimated short-run elasticity of electricity demand with 

respect to price is between -0.17 and -0.37, depending on the time period and the model specification. This 

is well within the range of other estimates of the short-run elasticity for electricity demand Lijesen (2007). 

For households with an IHD, the estimated elasticity of demand is about -0.2, and does not change 

appreciably across different time periods. Interestingly, this implies that the elasticity estimated for 

households with an IHD is sometimes higher and sometimes lower than that estimated for households 

without an IHD. It is therefore not possible based on this study to conclude that real-time feedback 

appreciably increases or reduces the sensitivity to time-of-use electricity prices. 
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6. CONCLUSIONS 

This report summarises the empirical literature on the effect of real-time feedback on electricity 

consumption decisions, presents a simple analytical model that describes how an optimising consumer 

responds to real-time feedback, and presents results from an empirical study based on a large-scale roll-out 

of IHDs to electric utility customers in Canada. Taken together, the results suggest that real-time feedback 

is likely to cause consumers to reduce electricity consumption. The results also suggest that consumers are 

unlikely to shift patterns of electricity consumption (i.e., the timing of electricity demand throughout the 

day) substantially in response to receiving an IHD if differences in prices throughout the day are modest. 

Finally, the results suggest that household respond to receiving real-time information on electricity price 

and consumption in part by making one-time decisions of a durable nature—such as adjusting thermostat 

setpoints, hot water heater settings, or upgrading the energy efficiency of household equipment—rather 

than by responding in real-time to the real-time information. 
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APPENDIX: INVENTORY OF STUDIES ON THE IMPACTS OF REAL-TIME FEEDBACK 

ON ELECTRICITY DEMAND 

Allen and Janda (2006)–Oberlin, Ohio Between January and March 2006, 60 Oberlin house- 

holds were surveyed to better understand the effects of continuous feedback in a residential setting across 

socioeconomic groups. 10 of the 60 surveyed households were randomly se- lected into the treatment 

group, while the remaining 50 served as the control group. The sample consisted of 30 households from 

the low-income section of Oberlin and 30 house- holds from the high-income section. Energy Detective 

electricity monitors, which display both real-time and historical electricity consumption in kilowatt hours or 

dollars, were given to the treatment group. Baseline data was also collected from the households using 

utility bill records and semi-structured interviews. 

Impacts: Researchers found no statistically significant difference in electricity consumption between 

the treatment and control groups. 

Commission for Energy Regulation (2011)–Ireland Electric Ireland’s Customer Behaviour Trial 

aimed to gauge customer response to various time-of-use tariffs and demand side management stimuli 

(enabling technologies) between January and December 2010. A benchmark baseline data collection 

period was held between July and December 2009, just prior to which time meters were installed in all 

5028 participating households. Participants were assigned to treatment and control groups, with the former 

receiving various combinations of time-of-use tariffs, in-home displays, and fridge magnets and stickers that 

outlined different electricity use time bands and cost per band. 

Impacts: Participants equipped with in-home displays reduced their overall energy consumption by an 

average of 3.2 percent and their peak demand by 11.3 percent. 

Delmas et al. (2013)–Meta-analysis The authors conducted a meta-analysis of 59 experimental 

studies, conducted between 1975 and 2012, on the impacts of information-based conservation strategies on 

energy consumption. 22 percent of the included studies were explicitly on the effects of real-time 

feedback and related enabling technologies such as energy monitors or in-home displays. A strict set of 

selection criteria were employed in the vetting of relevant studies. Included papers met quality standards 

(i.e., were peer reviewed), had experimental designs, were only related to feedback effects in the residential 

sphere, and reported feedback effects in percentage relative to a baseline or in kilowatt hours. Finally, all 

studies were run through a meta-regression analysis to estimate the effects of various conservation 

strategies. 

Impacts: On average, real-time feedback elicited an 11 percent reduction in energy consumption. 

Additionally, researchers found a weighted average energy conservation of 7.4 percent for all information 

strategies. 

Karkkainen (2004)–Denmark and Norway EFFLOCOM (Energy efficiency and load curve impacts 

of commercial development in competitive markets) report summarises results from several energy 

efficiency pilot projects conducted in the EU and Norway, with the aim of understanding market barriers 

to energy efficiency. The Danish pilot—held between October 2003 and January 2004—consisted of 

25 households equipped with “Amlight” load control devices that controlled the energy use of several 

appliances. The first Norwegian pilot was a mixed commercial/residential pilot in Oslo between 

January 1998 and December 2001. During the pilot 173 residential and 40 commercial participants were 

provided “smart thermostats,” allowing them to control electric heating and boilers. From August 2003 to 

May 2004 a second residential/commercial Norwegian pilot was held outside of Oslo with a sample of 

10,894 treatment and control group members. Customers were provided “Ebox” load control relays, which 
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allowed for direct two-way communication of consumption data between electricity users and producers 

via the internet. 

Impacts: Participants in the Danish pilot saw peak demand reductions of approximately 2.5 to 5.3 

kW/house. Residential customers in the first Norwegian pilot reduced peak demand by 8.8 to 10.7 percent, 

while commercial customers reduced their peak demand by an average of 8 percent. The second 

Norwegian pilot realised an average peak demand reduction of 11 percent. 

Faruqui and George (2005)–California California’s Statewide Pricing Pilot was conducted between 

June 2003 and December 2004, involving approximately 2,500 residential and small- to-medium size 

commercial and industrial customers of three investor-owned utilities. The chief aim of the pilot was to 

demonstrate whether or not customers reduce energy consumption in response to time-varying prices, 

but it also contained evidence on the impacts of real-time energy monitors. A subsection of the sample 

was recruited from the general population and was given the choice of having smart thermostats 

installed, while another subsection already had smart thermostats from a previous pilot. 

Impacts: Customers who received the Critical Peak Pricing (CPP) rate intervention saw peak electricity 

use reductions between the 8 to 15 percent. However, when smart thermostats were added to the CPP 

intervention, the peak reductions were even greater, at 25 to 30 percent. 

Faruqui and George (2005)–Baltimore, Maryland Over the summer of 2008, Baltimore Gas & 

Electric ran their Smart Energy Pricing Pilot, which tested the effects of an IHD called the “Energy Orb” 

(i.e., spheres that change colour in real-time depending on energy usage) in a residential setting. The 

pilot also used several pricing structures such as flat, seasonal, and volumetric rates and educational 

materials. A subsection of the 1,021 household sample received the IHD, while 354 customers comprised the 

control group. There was no indication of whether or not all of the sample customers were randomly 

selected or if treatment was randomly assigned to participants. 

Impacts: With educational materials and different rate structures alone, the study found between 

18 to 21 percent reduction in critical peak electricity demand. When the Energy Orb was combined with 

the dynamic pricing programmes, the reduction in critical peak demand was in the 23 to 27 percent range. 

Faruqui et al. (2010)–Various locations Authors present a survey of evidence from twelve 

experimental pilot programmes, some ongoing during the time of writing, in both North America and 

international locations. The study intended to extract some approximations of the impact of IHD real-time 

feedback on residential energy consumption. The pilots included are heterogeneous in terms of their 

interventions (i.e. type of IHD and energy tariffs), geographic locations, timespans, samples, structures 

and designs. Additionally, not all studies have randomised treatment and control groups and the authors do 

not attempt to account for differences between studies in their overview. 

Impacts: IHDs were found to cause a 3 to 13 percent decline in energy consumption, with an 

average 7 percent decline without prepayment of electricity and an average 14 percent decline with 

prepayment. However, these are rough estimates owing to the fact that some of the pilots had not concluded 

thereby limiting available data. 

Faruqui et al. (2014)–Connecticut The authors review the findings from Connecticut Light & 

Powers “Plan-it Wise Energy Programme,” a pilot involving approximately 2,200 customers conducted 

between June and August, 2009. The pilot programme involved residential and small commercial 

utility customers. Treatments included different rate structures and four enabling technologies, two of 

which were a real-time in-home display and the Energy Orb. Principally, the aim of the study was to 

better understand the effects of dynamic pricing interventions, and different enabling technologies, on 

residential and commercial energy usage. 
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Impacts: Customers equipped with the Energy Orb did not significant reduce their energy 

consumption. However, when all enabling technologies, including A/C switches and in- home displays, 

were combined with dynamic pricing, customers reduce their energy consumption by 23 percent. 

Fenrick et al. (2014)–Minnesota and South Dakota The Sioux Valley Energy (SVE) pilot 

programme, conducted between June and August 2011, randomly selected 601 farm-rural and residential 

customers in Minnesota and South Dakota to test the impact of a critical peak pricing regime—including 

enabling technologies—on household electricity demand. The sample was divided into three groups, the 

first randomly selected and able to opt-out of the pilot, the second were opt-in and already had advanced 

metering infrastructure (AMI), and the third were randomly selected, already had AMI, and were provided 

in-home displays. 

Impacts: Opt-out groups had an average peak reduction of 7 percent, while the opt-in groups peak time 

reduction average was 27 percent. The authors do not discuss the disaggregated effects of IHDs on peak 

reduction between the two opt-out groups. Additionally, the authors believe that self-selection bias is at play 

in the opt-in groups larger peak reduction. 

Gans et al. (2013)–Northern Ireland Researchers examined the rollout of the Home Energy Direct 

Keypad in Northern Ireland using data from 18 consecutive waves of the Continuous Household Survey 

from 1990-91 to 2008-09. The Keypad displays real-time usage, costs, and the consumer’s credit 

balance. Approximately 45,000 households are accounted for in the study. Those who received the 

Keypad metering devices were considered the treatment group, while those control group consists of all 

other consumers on all other plans. 

Impacts: Between 2002 and 2009, researchers observed an 11 to 17 percent reduction in electricity 

consumption in households that received the smart metering devices. 

Harding and Lamarche (2016) Households in a South Central US state were recruited to be 

programme participants. Participants were randomly assigned to one of three treatment groups or a 

control group, with roughly 200 households in each group. Treated households were assigned to a time 

of use pricing tariff, while control households faced a standard increasing block tariff. All treatment 

households received access to a web portal, which contained electricity consumption data. In addition, one 

group of households received an IHD, while another also received a programmable ‘smart’ thermostat. 

Impacts: Receipt of an IHD (alone) did not cause households to engage in significant load shifting 

from peak to off-peak hours. 

Houde et al. (2013)–United States Google “Powermeter” energy monitors randomly were provided 

to 752 Google employees living on the west coast, east coast, and in central United States. An additional 

313 Google employees served as the control group, which was created via stratified random sampling 

(based on geographic region), and were only provided Powermeters 3 months after the start of the pilot. 

Powermeters provided participants a host of information on electricity consumption including, but not 

limited to, real-time usage, historical usage, projected electricity bills, time of day consumption data, and 

conservation tips. The study, which ran from February to October 2010, aimed to estimate the impact of 

real-time feedback technology on residential energy consumption. 

Impacts: Researchers observed and average reduction in electricity consumption of 5.7 percent. 

However, reductions were not sustained four weeks after the intervention was introduced. 

Ivanov et al. (2013)–Andover, Minnesota Between April 2008 and August 2010 Connexus Energy, 

an energy utility in suburban Andover, ran a pilot programme to test the effects of IHDs and smart meters 

on home energy consumption. 1,000 participants were randomly selected from within geographic 
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boundary of Andover. Of the 1,000, 125 households opted-in to receive IHDs and smart meters, while 

the other 875 households served as a control group. Data used in the study is from the months of June 

2010 to the end of August, 2010. There were no rate changes during the time of the study. 

Impacts: Households in the treatment group had an average peak rate reduction of 15 percent between 

June and August, 2010, when compared with the control group. 

Jessoe and Rapson (2014)–Connecticut A sample of 437 customers (households) of Connecticut’s 

United Illuminating Company volunteered to participate in a trial of two interventions, a time-of-use pricing 

regime and an in-home display, designed to reduce residential energy consumption.  The trial ran from 

July to August 2011, and consisted of two randomly assigned treatment groups: one receiving the price 

intervention and the other receiving both the price intervention and enabling technology, in addition to 

one randomly assigned control group of 207 customers. The IHDs displayed real-time energy 

consumption, costs, and the consumers projected monthly bill to-date. 

Impacts: Customers in the group that received both the price and IHD treatments saw their energy 

consumption decline by 8 to 22 percent. In contrast, those that only received the price intervention 

reduced their energy consumption by only 0 to 7 percent relative to the control group. Researchers 

attribute the increased energy savings of the IHD group not to price salience, but to “consumer learning.” 

Lynham et al. (2016)–Hawaii In an effort to understand the causal mechanisms at play in real- time 

feedbacks impact on residential energy consumption, researchers conducted a randomised control trial with 

65 volunteer households in a Honolulu condominium complex. The trial was conducted in three 30 day 

periods, the first of which was when baseline data was collected from the households, while in the second 

period both treatment groups received in- home displays that provided real-time information to households 

in both kilowatt hours and dollars per hour. During the final period the discontinued treatment group had 

their IHDs removed. 

Impacts: Researchers found that treatment groups saw an average energy reduction of 11 percent, 

although the cause of the reduction was attributed to consumer learning rather than price saliency. 

Additionally, the learning effects were found to diminish over time. 

Mukai et al. (2016)–Tokyo, Japan Researchers in Funabashi, Japan conducted a one-month control 

trial from August to September 2013 to test the impact of different packaged interventions consisting of 

varying rate structures and feedback interventions, including a 30-minuted tiered rate, in-home displays, 

email notifications, and paper-based usage reports. 228 res- idents of a Funabashi condominium opted-in 

to the trial. All interventions were assigned randomly to three treatment groups, and the control group was 

created using stratified random assignment. One major drawback of the study is that all participants were 

exposed to the IHD and 30-minute tiered rates as part of the standard services in the condominium. 

Impacts: Group B, which received all treatments, realised average peak savings of 11.6 percent, 

while there were no statistically significant reductions—when compared with the control, Group D—

found for Group A, which was assigned the 30-minute tiered rate and IHDs. One caveat, noted by the 

researchers, is there may be underestimation effects (i.e., they have already internalised the learning 

effects of IHDs) in the findings because of the participants prior exposure to some of the treatments. 

Nilsson et al. (2014)–Gothenburg, Sweden This study presents the results of two field 

experiments, one just outside of Gothenburg and the other inside the city, which aimed to test the impacts 

of in-home displays on energy consumption. The former study was held in two smaller municipalities 

and had a sample of 42 randomly selected households that were randomly assigned IHDs or into a control 

group. The second study was held in the city of Gothenburg and hand a sample of 32 households from 

two similar rented apartment blocks. Participants in the second study were randomly selected by the 
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housing manager and then randomly assigned into treatment and control groups, while further baseline 

data was obtained from the apartment block housing company. Both studies used the same IHD model, 

which displayed real-time and historical energy usage, estimated costs, and CO2 emissions resulting from 

participant electricity consumption. 

Impacts: No statistically significant reductions in energy consumption relative to the control groups 

were found in either study. Moreover, although the study was limited by its low sample size, the 

researchers note that prior interest in environmental sustainability, energy savings, and knowledge of 

IHDs—as well as the aesthetics of the IHDs themselves—all contribute to the impact these enabling 

technologies have on consumer behaviour. 

Schleich et al. (2013)–Linz, Austria Running from December 2009 to November 2010, 

1,525 residential customers were randomly selected into pilot and control groups for a field trial 

examining the effects of real-time feedback on energy consumption. 725 participants were given the 

option of selecting either written or web-based feedback, while those in the control group were not 

notified that they were part of a feedback study. All participants were part of a larger population that had 

smart meters installed in their homes after their old, conventional meters had broken. 

Impacts: Feedback group participants reduced their average energy consumption by 4.5 per- cent 

relative to the control group. The researchers findings also suggest that electricity consumption is inversely 

correlated with the frequency of billing and metering. 

Schultz et al. (2015)–San Diego, California In a one year randomised control trial beginning in 

October 2012, researchers recruited 431 single family households through a postal survey and randomly 

assigned them to one of seven treatment groups and one control group to test the impact of social 

norms, different pricing regimes, and feedback. Feedback groups received ZigBee custom-coded in-home 

displays that used LED lights to communicate real- time usage levels below (green), at par with (yellow), or 

above the household average kilo- watt usage. Groups that received the norms + feedback intervention 

had their IHDs coded to display usage above (red), at par with (yellow), or below (green) the average of all 

other households, including a kWh comparison. The cost + feedback treatment group had their IHDs 

programme to display kWh consumption and associated costs per kWh. 

Impacts: Only the norms + feedback group saw reductions—of 7 to 9 percent—in their energy 

consumption when compared with the control group. 

Sulyma et al. (2008)–British Columbia Between November 2006 and February 2007 BC Hydro 

conducted a pilot programme to test the efficacy of different price signaling regimes and technologies. 

2,000 residential customers, mainly single family dwellings, from the lower mainland, Vancouver Island, 

and northern British Columbia were randomly selected and randomly assigned into three treatment groups 

and a control group. Treatment groups A and B received advanced meters and different communications 

packages, which included periodic emails notifying them of their energy usage. Group C received the same 

package as B, but also had Blue Line Display Monitors (IHDs) installed. 

Impacts: Group C experienced a 5 percent reduction in their overall energy consumption and a 9 percent 

reduction in peak demand—both attributable to the effect of in-home displays. 

Westskog et al. (2015)–Norway Running from 2010 to 2014, two consecutive two-year pilot pro- 

grams in Norway involving 33 participants served to investigate how in-home displays affected energy 

consumption in a residential setting. The 33 participants were self-recruited into the pilots and all had an 

annual electricity consumption falling between 20,000 and 40,000 kWh. No randomised treatment or 

control groups were used in either pilot; instead the sample was selected in partnership with a local 

housing association to approximately match the average Norwegian in terms of affluence and interest in 
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in energy conservation. In addition to baseline data, participants energy consumption data was compared 

with that of their neighbours. Participants were provided with the e-Wave in-home display during the first 

pilot, but technical difficulties made the data unusable. The Solo II real-time energy monitor was used in 

the second pilot with success. 

Impacts: Participants in the second pilot study reduced their energy consumption by an 

approximate average of 12.2 percent one year after their IHDs were installed. However, due to the small 

sample size this is not a statistically significant finding. 

Xu et al. (2015)–Shanghai, China Two recently built Shanghai apartment buildings received IHDs in a 

brief pilot programme last for the month of November, 2013. The study aimed to test how effective IHDs 

are in reducing home energy consumption in Shanghai.  131 respondents participated in the pilot, 76 of 

which received IHDs that displayed real-time energy consumption data, while 55 served as a control 

group. The sample was selected based on a host of socioeconomic information using a non-probability 

sampling technique. 

Impacts: The treatment group reduced their energy consumption by an average of 9.1 percent over the 

control group. Additionally, the researchers found that introducing IHDs also led to a 12.9 percent 

reduction in average standby power usage when compared to the control group. One major caveat to be 

aware of is that there was no randomisation in the sampling and treatment assignment, in addition to little 

to no discussion of the methodology used. 
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APPENDIX: ADDITIONAL TABLES SUPPORTING THE CASE STUDY 

 25th percentile Median Mean 75th percentile Standard 
deviation 

Hourly 
consumption 
(kWh) 

0.37 0.80 1.28 1.67 1.41 

Temperature 
(oC) 

0.3 7.8 7.2 15.8 10.2 

Price (c/kWh) 6.6 7.1 8.4 10.3 2.3 
Summary statistics for the case study data set. The sample consists of 6,881 households observed hourly over 

a 2-year period from September 2012 to September 2014. There are a total of 117 million hourly observations of 

household electricity consumption. The electricity price is deflated by the Ontario consumer price index, and 

temperature is measured at a nearby monitoring station maintained by Environment Canada. 

 

 (1) (2) 

IHD -0.031*** 
(0.007) 

-0.032*** 
(0.008) 

Date-hour FE Yes Yes 

Household-hour FE Yes Yes 

Sample All days Weekends 

R2 0.440 0.440 

Observations 115,413,459 33,097,750 
Main regression results. The table shows the results of a regression of hourly electricity consumption on a 

dummy variable indicating whether a household has been sent an IHD as well as fixed effects as described in the text 

and in Martin and Rivers (2015). Column (1) uses all observations while column (2) restricts the sample to weekends. 

 

 

 (1) (2) 

log(price) -0.377*** 
(0.141) 

-0.167*** 
(0.068) 

IHD x log(price) 0.173*** 
(0.057) 

-0.074 
(0.052)  

Date FE Yes Yes 

Household-hour FE Yes Yes 

Temperature bins Yes Yes 

Covariates Yes Yes 

Sample Winter weekdays Summer weekdays 

R2 0.542 0.519 

Observations 5,865,587 6,672,141 
Regression results to determine the effect of IHD on price responsiveness. This table show the results of a 

regression that restricts the sample to weekdays within 30 days of a change in the electricity pricing tariff, as 

illustrated in Figure 6. Each column in the table is based on a balanced panel of households within the window, who 

do not alter their IHD status over the duration of the 60-day window. Regressions include dummy variables to 

indicate outdoor temperature, as well as covariates to capture changes in daylight and time trends interacted with hour 

dummy variables. Column (1) presents results for the change in electricity tariff in winter 2013, and column (2) 

presents the results for the change in electricity tariff in summer 2013. 
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