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Foreword 

Unlocking Reductions in the Construction Costs of Nuclear: A Practical Guide for Stakeholders completes 
a series of recent OECD Nuclear Energy Agency (NEA) publications addressing the cost of the 
electricity provision in all its dimensions. In contrast to The Full Cost of Electricity Provision (NEA, 
2018) and The Costs of Decarbonisation: System Costs with High Shares of Nuclear and Renewables 
(NEA, 2019) which focused on the external and system costs, respectively, the present report 
assesses the construction cost reduction opportunities arising at the plant-level. Although the 
publication Nuclear New Build: Insights into Financing and Project Management (NEA, 2015) provided 
an evaluation of a number of recent nuclear construction projects, the reduction of new nuclear 
construction costs is a topic that had not been studied in detail under the auspices of the NEA 
since 2000. 

As highlighted by the NEA’s sister-agency, the International Energy Agency (IEA), nuclear 
power is an integral part of future low-carbon energy portfolios that meet the decarbonisation 
objectives of the Paris Agreement. However, over the last decade significant cost overruns and 
delays in a number of OECD countries have challenged the competitiveness of nuclear power 
and are driving up the risk perception of future projects. Several studies have been recently 
published on the matter that shed light on specific cost drivers and risks associated with the 
construction of nuclear power plants. The present report builds on these works and brings a 
new perspective highlighting the role of the different stakeholders – and in particular 
policymakers – to unlock a positive learning trend in nuclear construction.  

After a long nuclear construction hiatus in OECD countries, recent nuclear projects have 
served to rebuild supply chain capabilities. While the industry has also made major efforts in 
terms of organisational restructuring and integration of a number of recent technological 
advances, governments hold the key to significant construction cost and risk reductions by 
committing to the next set of new build projects. With several projects under completion in 
OECD countries, the next decade offers a window of opportunity to capitalise on the experience 
accumulated to improve the economic performance of both traditional large reactors, as well as 
new, innovative designs such as various small modular reactors. 

More recently, the COVID-19 crisis has been a stark reminder of the critical importance of 
having a robust electricity infrastructure capable to withstand and recover from major 
disruptions. Resilience will be at the core of the energy infrastructure of tomorrow. At the same 
time, the stimulus packages under development in different countries provide an excellent 
opportunity to place the development of a low-carbon resilient infrastructure at the centre of the 
economic recovery. After a period of unprecedented economic slowdown, maximising investment 
efficiency will be a priority. Policymakers will find in this study timely evidence on the most 
appropriate governing schemes to include nuclear in their recovery plans and build, in a cost-
effective manner, a low-carbon, competitive and resilient electricity infrastructure for all. 

 

 

 

William D. Magwood, IV 
Director-General, Nuclear Energy Agency 
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Executive summary 

Time for action if nuclear is to be a part of future electricity systems 

Globally, the long-term contribution of nuclear power is needed if countries around the world 
are to meet their ambitious targets to dramatically reduce and eventually eliminate the net 
production of carbon dioxide. However, it is increasing clear that the world is not on track. 
According to the International Energy Agency (IEA) Sustainable Development Scenario (SDS), 
new nuclear capacity will be needed in addition to ambitious lifetime extension programmes 
for existing nuclear power plants. In 2019, nuclear power was not on path to reach the required 
output; in fact, the rate of annual capacity additions would need to at least double between 2020 
and 2050 to meet the SDS target.1 

There are many reasons for this shortfall, but the most impactful are related to the high 
cost of new nuclear projects, particularly in countries that have not built nuclear plants in recent 
decades. For those countries that have launched new projects, the experience has been difficult. 
These first-of-a-kind (FOAK) Generation III projects, particularly in most Organisation for 
Economic Co-operation and Development (OECD) member countries, have been affected by 
construction delays and cost escalations. Consequently, stakeholder and public confidence in 
the ability of the nuclear industry to build new projects has been eroded. Moreover, the 
perception that new nuclear plants carry high project risk dissuades investors and has further 
reduced the ability of countries to attract financing for future projects.  

These issues are not present in countries that have been building plants continuously. In 
those countries, with their experienced project organisations and well-established supply 
chains, nuclear projects are being executed cost- and time-effectively. This suggests that the 
challenges experienced by many FOAK projects are not inherent to the nuclear technology itself 
but rather depend on the conditions in which projects are being delivered and on the 
interactions among the various project participants involved. 

The use of nuclear power in many OECD countries is now at a critical juncture. After a long 
hiatus in plant construction, the completion of several FOAK projects has contributed to 
restoring industrial capabilities, resulting in a window of opportunity to capitalise on 
accumulated experience and improve the economic performance of future nuclear projects. 
While also applicable to small modular reactors (SMRs) and advanced reactor concepts for 
deployment in the longer term, this report focuses on potential cost and risk reduction 
opportunities for traditional Gen-III reactor designs that could be unlocked in the short term 
(i.e. for projects carried out by 2030). It also assesses the policy and governance frameworks 
needed to promote learning and continuous improvement in industrial performance.  

Recent construction cost increases are due largely to indirect costs and reflect the 
nonrecurring costs of deploying a new generation of reactors 

In some cases, capital costs account for more than 70% of total new nuclear plant production 
costs (similar to hydropower projects). Furthermore, the cashflow structure of nuclear projects 
requires large amounts of capital to be mobilised upfront. Construction lead times and costs, 
together with the cost of capital, determine a plant’s economic performance. Once a plant is 
built its operational costs are low and predictable.  

 
1.  IEA (2019), Tracking Power 2019, IEA, Paris, www.iea.org/reports/tracking-power-2019/nuclear-power. 
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A breakdown of investment costs provides insight into cost reduction potential:  

• A large portion of engineering, procurement and construction (EPC) costs are indirect and 
have expanded significantly in the past decade. This reflects the fact that recent cost 
escalations result mainly from design, planning, support service and installation expenses 
rather than from components and materials. These indirect costs can therefore be 
contained and reduced with proper project governance. Furthermore, most indirect costs 
are also nonrecurring (i.e. for design and licensing), especially with serial construction. 

• As EPC costs are dominated by labour, measures to raise labour productivity could 
significantly reduce investment costs. 

• Depending on the project and its country-specific conditions, financing costs often make 
up a significant share of total investment costs. The lack of stakeholder confidence in 
western OECD countries therefore raises financing costs, feeding into a vicious cycle. 

Eight priorities to unlock nuclear construction costs reduction 

This study focuses on both the reduction of construction costs through a selected number of 
well-defined cost drivers and on the reduction of the cost of capital through the improved 
allocation of construction and market-related risks faced by new nuclear projects. 

To reduce nuclear construction costs, eight drivers have been identified to unlock positive 
learning and continually improve large Gen-III reactor projects (Figure 1). Implementing these 
cost reduction drivers should also attenuate the technology, organisational and regulatory risks 
associated with new nuclear power plant deployment. 

Lessons learnt 

Historical and recent evidence suggest that lessons learnt have been well understood and can 
be easily implemented in future projects. In fact, several non-OECD countries delivering 
competitive nuclear projects today are already taking advantage of them. As a result of entering 
this phase of more rapid learning, upcoming nuclear projects should be delivered at lower cost. 

First, detailed designs must be complete and ready for construction. This implies 
engagement with the supply chain early in the design process to integrate all requirements 
necessary for construction. Ideally, when adequate design maturity has been achieved, the 
design configuration should be frozen and systematically replicated as many times as possible, 
capitalising on multi-unit and series effects to build up supply chain capabilities.  

The design phase should also include a robust implementation strategy with clearly defined 
responsibilities and competences at all levels and stages of the project. A strong, experienced 
project management team is essential to ensure proper project execution and to deal effectively 
with all interfaces and unexpected situations. Regulatory regime predictability and stability are 
preconditions to implement these measures. 

Second, the most effective way to reduce construction costs in the near term (early 2020s) 
is to develop a nuclear programme that takes advantage of serial construction with multi-unit 
projects on the same site and/or the same reactor design on several sites. 

Cost reduction opportunities in the short term (up to 2030) 

With these drivers and conditions in place, nuclear project costs could be further reduced in the 
short term. The interplay between plant design and delivery processes presents a range of cost 
reduction opportunities. These options are not necessarily sequential and can be mobilised even 
during the early planning stages to accelerate learning. There is evidence that countries in more 
advanced stages of learning are already benefitting from these opportunities and working on a 
continuous-improvement basis, similar to other industries. In addition, the right balance 
between improvement and replication needs to be found to preserve positive learning dynamics 
and maximise cost reduction potential. As learning develops, timely decision making is 
essential to optimise construction pace and limit the risk of over-engineering. 
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At the reactor design level, experience gained in early construction projects can lead to 
greater simplification, standardisation and modularisation, as well as to better integration of 
the latest technical advances. Organisational efficiency can also be unlocked through innovative 
techniques, and value-engineering (i.e. design-to-cost) can be incorporated into the design 
process to streamline and prioritise design optimisation according to cost targets while enabling 
greater supply chain involvement. Business processes and construction techniques can also 
benefit from digitalisation, new system engineering paradigms, and knowledge management 
approaches.  

At the regulatory level, recent field experiences show that overall regulatory costs and risks 
can be reduced if regulators and licensees interact co-operatively and flexibly to ensure safety 
while avoiding misinterpretation.  

Previous experience illustrates that the nuclear technology learning process involves a wide 
range of stakeholders – not just vendors and operators. As with other large-scale infrastructure 
that has a long-lasting impact on the economy and society, the context in which nuclear 
projects are delivered is of capital importance. Policymakers therefore have an active role in 
creating the most adequate conditions for the delivery of cost-competitive projects. 

Figure 1: Nuclear cost and risk reduction drivers 

 

Note: kWe = kilowatt electrical capacity. 

Additional opportunities in the longer term (beyond 2030) 

There are indications that countries already in the more advanced learning stages are working 
towards longer-term cost reductions.  

These further cost reductions can be unlocked by greater harmonisation of codes and 
standards and licensing regimes. Indeed, harmonisation efforts in highly regulated sectors such 
as aviation have already produced positive results. Without neglecting the political dimension 
and the need to protect the sovereignty of national regulators, international collaboration on 
regulatory harmonisation has demonstrated that it is possible to reach consensus in some areas. 
Joint actions by two or more national regulators can be highly beneficial as long as they do not 
lead to an accumulation of regulatory requirements based on the different approaches of the 
regulators involved. 
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SMRs are gaining recognition as potential disruptive options that could provoke a paradigm 
shift. Progress in concept design viability has been achieved in recent years, with the first 
potential sites identified and licensing milestones reached in the United States. Owing to their 
smaller size and modular construction, SMRs introduce a set of advances at the design and 
process level that could mean not only shorter construction lead times but extend nuclear 
power value proposition.  

For SMRs to be a credible option by the early 2030s, successful prototypes must be developed 
in the 2020s to demonstrate the announced benefits. From a cost perspective, SMRs will follow 
the same learning curve as other nuclear technologies (illustrated in Figure 1), but the cost 
reduction factors will not carry the same weight. For instance, the series effect, simplification 
and standardisation will be relatively more important to balance diseconomies of scale. At the 
same time, several learning factors such as project management, construction advances and 
innovative organisational processes are not technology-specific, so SMRs should benefit from 
progress made with large nuclear power plants (NPPs) in the 2020s. This illustrates the 
complementarity of both technology families, with progress made in upcoming large Gen-III 
nuclear constructions supporting the future success of SMRs.  

Concerted effort between government, industry and society are needed 

Financial costs are central to cost reduction efforts, as they can represent more than 80% of 
capital expenditures. Having access to affordable financing therefore has a first-order impact 
on the levelised cost of nuclear power. The cost of capital is determined primarily by the risk 
premium expected by investors, which reflects the allocation of construction and market risks.  

In countries that intend to rely on nuclear power, the cashflow structure of nuclear projects, 
the perceived associated risks (i.e. uncertainties founded largely on the poor recent construction 
record in western OECD countries) and current electricity market conditions provide a strong 
rationale for state commitment, regulation and, most likely, transitional financing in the early 
stages of the learning process. State financing can be provided in various forms: direct 
(i.e. equity, debt); indirect (market regulation, loan guarantees); or a combination of both. 
Financial support from foreign governments (e.g. through export credit agencies) could also 
have a positive impact. 

In countries that successfully implement new-build projects, the government is highly 
involved in the nuclear construction programme. It absorbs the residual risks and provides the 
positive, long-standing policy signals and timely decision-making necessary for effective 
industrial planning and optimisation. The societal contributions of nuclear power have to be 
viewed as a social contract among policy makers, industry and society – the beneficiaries of 
successful project delivery.  

The choice of strategy adopted may depend on various country-specific constraints and 
preferences. Not all countries can afford to pay for the entire nuclear learning curve and may 
instead prefer to take advantage of more developed supply chains. Other countries, however, 
would choose to restart a nuclear construction programme using in-house capabilities or just 
continue with long-term cost and risk optimisation. This report acknowledges all options to 
provide the evidence and measures necessary to make low-cost nuclear projects and long-term 
learning possible under various nuclear development scenarios. 
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Key policy recommendations 

1. Capitalise on lessons learnt from recent Gen-III construction projects. With the construction 
of several FOAK Gen-III nuclear reactors completed, the nuclear industry and its supply chain 
have in large part redeveloped their capabilities in several OECD countries. By building on 
these reactor designs, governments have a window of opportunity to realise cost reductions 
in the early 2020s through timely new-build decisions. Delaying these decisions will prevent 
the sustainment of capabilities and therefore raise near-term project construction costs. 

2. Prioritise design maturity and regulatory stability. Designing policies to support nuclear 
construction is critical to ensure that new-build projects start in the right conditions. Policy 
support mechanisms should include requirements for design maturity and, more specifically, 
construction readiness, and should ensure that the regulatory framework for nuclear safety 
remains stable and predictable throughout construction. 

3. Consider committing to a standardised nuclear programme. For countries considering 
multiple new-build projects, commitment to a standardised nuclear programme to capitalise 
on the series effect, multi-unit construction and continuous design and process optimisation 
is the most promising avenue to effectuate cost reductions.  

4. Enable and sustain supply chain development and industrial performance. Industrial and 
energy strategies for new nuclear plants need to be carefully articulated. For instance, 
investment in supply chain capabilities require assurance of long-term energy policy 
commitment to new nuclear construction to adopt the latest technical and organisational 
advances under the best conditions. New-build ambitions needs to be adjusted to integrate 
supply chain constraints and ensure continuous activity to enable and sustain development.  

5. Foster innovation, talent development and collaboration at all levels. Governments can 
support cost reduction opportunities arising from innovative nuclear technologies (i.e. SMRs 
and Gen-IV reactors) by ensuring the timely development of demonstration projects and the 
licensing framework required to foster market deployment. Supporting talent development is 
also essential given the high level of technological expertise needed in nuclear power. National 
and international collaboration remains a key vector to achieve these objectives. 

6. Support robust and predictable market and financing frameworks. Nuclear new-build projects 
require long-term government planning involving both specific commitments and market 
regulations. In addition, financial support is currently essential in western OECD countries – 
at least as a transitional measure – to deliver cost-competitive new nuclear construction. 

7. Encourage concerted stakeholder efforts. Governments should create an environment that 
fosters a social contract with industry and society to reduce nuclear construction costs. Recent 
national initiatives such as the Nuclear Sector Deal in the United Kingdom provide clear 
evidence of how such frameworks can be developed and implemented. 

8. Tailor government involvement to programme needs. The enabling role of governments will 
differ depending on the nature of the programme. Whereas government financial support in 
countries considering a fleet programme can be expected to decrease gradually as the industry 
reaches maturity and the perceived risk level falls, countries restarting a nuclear programme 
or considering only a single-plant project are likely to require further government support. 
 





 

 

Part 1: Introduction and overview  
of nuclear power costs 
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1. Introduction 

1.1  The context: Time for action if nuclear is to be a part of future electricity systems 

Since the Paris Agreement entered into force in November 2016, many OECD countries have 
been undertaking major efforts to decarbonise their economies to limit average global 
temperature rise to well below 2°C above the pre-industrial level. The electricity sector leads 
this transformation and is undergoing major restructuring. To meet the climate targets, the 
average carbon intensity of electricity generation in OECD countries has to be reduced from 
430 grammes of carbon dioxide per kilowatt hour (gCO2/kWh) in 2019 to less than 50 gCO2/kWh 
by 2050 (NEA, 2019), requiring reductions of about 3% per year. After two years of growth, 
however, global emissions in 2019 were unchanged at 33 gigatonnes. Hence, global trends are 
far from being on track and further efforts are needed (IEA, 2020a). 

According to the International Energy Agency (IEA), achieving sustainable development 
objectives will therefore require the mobilisation of all available low-carbon technologies, 
including nuclear power. In its yearly publication Tracking Clean Energy Progress, the IEA 
monitors the development of clean technologies to decarbonise the power sector in relation to 
the Sustainable Development Scenario (SDS) goals.2 In 2018, 11.2 gigawatts of nuclear electrical 
capacity (GWe) were connected to the grid and construction of 6.8 GWe more was initiated. 2019 
values are less encouraging, with 5.5 GWe connected to grid and little construction beginning 
(Figure 2). Regional trends confirmed that nuclear development is concentrated essentially in 
the Russian Federation and the People's Republic of China. According to 2019 values, nuclear 
power is not on track with SDS development targets (Figure 4).  

Figure 2: Nuclear power construction starts and first grid connections, 2007-2019 

 
Source: IEA, 2020b. 

 
2. Under the SDS, temperature rise remains below 1.8°C with a 66% probability, without reliance on global 

net-negative CO2 emissions; this is equivalent to limiting temperature rise to 1.65°C with a 50% 
probability. Under the SDS, global CO2 emissions fall from 33 gigatonnes in 2018 to less than 
10 gigatonnes by 2050 and are on track to net-zero emissions by 2070 (IEA, 2019). 
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Assuming 60-year operation of most of the existing fleet, around 15 GWe of new nuclear is 
needed every year to keep pace with the SDS – at least double the current annual rate of capacity 
additions between 2020 and 2040. Such development is technically feasible, as proven during 
the first nuclear deployment era in the 1980s with yearly capacity additions of about 30 GWe 
(NEA/IEA, 2015).  

The low level of new nuclear development results largely from the difficulties encountered 
with recent first-of-a-kind (FOAK) Gen-III projects, particularly in western OECD countries. 
These projects have had significant delays and cost overruns, exacerbated by initial estimates 
heavily influenced by low levels of design and execution planning maturity (Box 1) – as well as 
the increasingly uncertain political context – when construction began.  

 

Box 1: How project maturity affects cost estimates 

When evaluating the performance of a project by comparing actual costs and lead times with early 
estimates, a key factor to consider is the project’s planning and design maturity. In fact, initial 
estimates and announced budgets tend to be calculated in a simplified way based on incomplete 
data that may not fully capture the complexity of large infrastructure projects, especially for 
projects in the early stages of development. The political context in which a project is launched 
also has a strong impact on the announced budget. As projects advance and more detailed data 
from suppliers and designers become available, cost estimates tend to increase to reflect greater 
technical detail and maturation. Finalisation of an initial project and execution of subsequent ones 
following a standardised design inaugurates a period of rapid learning (Figure 3).  

Figure 3: Nuclear new-build learning curve 

 
                       Source: Adapted from Yemm et al. (2012), “Pelamis: Experience from concept to connection.” 

The cost escalations and delays of recent nuclear construction projects are to a large extent the 
result of poor estimates due to the lack of design maturity in uncertain political contexts. With 
some projects nearing completion in western OECD countries, new estimates should be more 
accurate and cost reductions achievable for future projects.  

These stages of learning apply not only to nuclear. For instance, Yemm et al. (2012) have shown 
that a similar learning pattern is apparent in the wind industry, with offshore wind power 
currently in a “rapid learning” phase and onshore wind power in “normal learning.” 
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Figure 4: Global nuclear capacity by scenario, 2010-2040 

 

Source: IEA, 2020b 

Some of these recent projects are presented in Table 1. Differences between initial 
announced budgets and ex-post construction costs reflect the cost escalations that have 
affected these projects, but the gap should be analysed cautiously as the initial announced 
budgets are the result of very specific conditions in line with Box 1. Figure 6 illustrates a similar 
trend in projected overnight construction costs for OECD countries, showing a significant 
increase between 2010 and 2015. The same applies to construction delays, with schedules of 
typically five to six years announced, but actual construction times of around ten years. In fact, 
some of these projects are still under development and may be operational more than 15 years 
after their construction start.  

Table 1: Construction costs of recent FOAK Gen-III/III+I projects 

Type Country Unit Construction 
start 

Initial 
announced 

construction 
time 

Ex-post 
construction 

time 

Power 
(MWe) 

Initial 
announced 

budget 
(USD/kWe) 

Ex-post 
construction 

cost (USD/kWe) 

AP 1000 
China Sanmen 1, 2 2009 5 9 2 x 1 000 2 044 3 154 

United 
States Vogtle 3, 4 2013 4 8/9* 2 x 1 117 4 300 8 600 

APR 1400 Korea Shin Kori 3, 4 2012 5 8/10 2 x 1 340 1 828 2 410 

EPR 

Finland Olkiluoto 3 2005 5 16* 1 x 1 630 2 020 >5 723 

France Flamanville 3 2007 5 15* 1 x 1 600 1 886 8 620 

China Taishan 1, 2 2009 4.5 9 2 x 1 660 1 960 3 222 

VVER 1200 Russia Novovoronezh II-1 
& 2 

2008 4 8/10 2 x 1 114 2 244 ** 

* Estimate. ** No data available.  

Notes: MWe = megawatt electrical capacity. kWe = kilowatt electrical capacity. 

Source: NEA analysis based on publicly available information. 
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As a result, stakeholder and public confidence in the capability of the nuclear industry to 
deliver new build projects has been eroded. This situation has also raised the level of perceived 
investment risk, intimidating investors and further reducing the chances of attracting financing 
for future projects. In addition to cost and time escalations, nuclear projects are subject to risk 
premiums because it is difficult to deliver confidence on the final cost and scheduling of future 
nuclear projects. For instance, Portugal-Pereira et al. (2018) suggest that the standard deviation3 
of historical construction lead times4 increased from 1.3 years in the 1960s to 7.5 years between 
2011 and 2016, as did the number of maximum outliers. That is why this study repeatedly 
emphasises that improving the economic performance of nuclear power requires a holistic 
approach that includes both cost reductions and risk allocation and mitigation measures.  

At the same time, the economic competitiveness of nuclear power in some OECD countries 
is also challenged on a levelised cost of electricity (LCOE) basis by adverse market conditions. 
The combination of low gas prices (especially in the United States) and the introduction of 
variable renewable energy (VRE) with specific support schemes are driving wholesale electricity 
prices down. Furthermore, there is growing recognition among energy policy experts that, due 
to the inherent intermittency of VRE and the absence of large-scale electricity storage solutions, 
high shares of VRE tend to raise electricity price volatility as well as overall system costs (NEA, 
2019). In this context (bearing in mind country-specific conditions), using dispatchable low-
carbon technologies such as nuclear power could increase the overall affordability and 
reliability of the electricity system. Current market designs fail to provide long-term price 
signals to properly value dispatchable generation attributes. Countries that support the 
construction of new nuclear power plants are considering the utilisation of specific support 
mechanisms – e.g. contracts for difference (CfDs) and power purchase agreements (PPAs) – 
similar to the schemes developed to promote VRE. 

In other parts of the world, nuclear power is delivered essentially on time and on budget. In 
China and Korea, a significant number of projects have been executed in less than six years over 
the last decade (Figure 5). It could be argued that this better performance is the result of 
alternative design features (in terms of constructability, for example), but even for a same 
design there are notable country differences. This performance gap cannot be explained solely 
by site-specific conditions that induce slight design modifications. Thus, challenges to 
delivering new nuclear capacity in western OECD countries are not inherent to the technology 
itself but rather depend on the conditions under which the projects are developed and executed, 
and on the interactions among the various stakeholders involved. 

Figure 5: Median construction times for new nuclear in China and Korea 

 

Source: IAEA (2019), Nuclear Power Reactors in the World. 

 
3. Standard deviation can be used as a measure of risk because it reflects the volatility of a given parameter. 

4. Portugal-Pereira et al. (2018) define lead time as the time difference between construction start (the 
beginning of licensing procedures) and commercial operations (when the reactor is connected to the 
grid after the initial test phase). 
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With several FOAK projects near completion, nuclear power in western OECD countries is 
now at a critical juncture. These projects were realised after a long hiatus in nuclear 
construction that had significantly eroded the nuclear supply chain and the industry’s 
capabilities, reinforced by a deindustrialisation trend in some OECD regions (Western Europe 
and North America). The sums invested in these FOAK projects financed not only the 
construction of the reactors themselves, but rebuilt industry capabilities. If the nuclear industry 
takes advantage of the accumulated experience and lessons learnt from these recent projects, 
the costs estimates gathered during the course of this study indicate that nuclear plant 
construction can now enter a more rapid learning phase, allowing it to deliver future projects 
at lower cost (see Figure 6). These trends are also in line with the cost model illustrated in 
Figure 3. 

Figure 6: Projected new nuclear cost trends in OECD countries 

 

Notes: 2010, 2015 and 2020 OECD average overnight construction cost data based on 2005, 2010 and 2015 NEA/IEA projected 
cost reports, adjusted for USD inflation using OECD statistics.  

Source: IEA/NEA, (Forthcoming), Projected Costs of Generating Electricity 2020. 

These conditions have opened a window of opportunity to improve the economic 
performance of large Gen-III reactors in the short term (i.e. before 2030). The purpose of this 
study is therefore to serve as a practical guide for stakeholders to make cost reductions a reality. 
It not only details potential cost and risk reduction options, but assesses the policy and 
governance frameworks necessary to promote learning and continuous industrial performance 
improvement. Some analysis also addresses small modular reactors (SMRs) and advanced 
reactor concepts, as these technologies will surely rely on the same cost reduction drivers to 
reach commercial viability. 

1.2  Structure of the report 

This study is divided into three main parts (see Figure 7): 

1. Introduction and overview of nuclear power costs (i.e. why and what). 

2. Nuclear construction cost reduction drivers (i.e. how). 

3. Policy frameworks to deliver competitive nuclear developments (i.e. who). 

Part 1 contains an overview of the main trends in new nuclear development, highlighting 
the challenges as well as opportunities available for decision makers (aspects already covered 
in this chapter). Before assessing nuclear learning in more detail, Chapter 2 provides some 
notions and definitions of nuclear costs and their impact on the economic performance of this 
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technology. Several investment cost breakdowns offer further insight into the nature of these 
costs and potential areas for cost reductions. 

In Part 2, several cost and risk reduction strategies that can enable learning in nuclear power 
are analysed in depth in different stages according to their implementation timeline. Activation 
of these measures should also help attenuate the technological, organisational and regulatory 
risks associated with the deployment of new nuclear capacity. 

Chapter 3 assesses historical and recent construction projects to identify common core cost 
reduction drivers. Supported by robust evidence, these lessons learnt are the backbone of the 
nuclear learning curve. Chapter 4 explores additional cost-reducing measures to accelerate the 
learning process available in the short term (before 2030) for post-FOAK projects and 
complementary to those described in Chapter 3.  

In the longer term (beyond 2030), more cost reduction opportunities may be possible thanks 
to the harmonisation of codes and standards and licensing regimes. Several countries in more 
advanced stages of nuclear learning are already moving in this direction. At the same time, 
more innovative concepts such as SMRs and Gen-IV reactors have made advances towards 
design viability. These concepts are expected to benefit from the same learning process 
described in Part 2. By design, they may take further advantage of specific cost-cutting strategies 
(i.e. the series effect, simplification, modularisation, etc.) to improve the economic performance 
of new nuclear installations. These possibilities are explored in Chapter 5. 

Part 3 presents the policy frameworks necessary to mobilise cost and risk reduction drivers. 
The success of these measures will depend upon government commitment, market regulation 
and most likely transitional financing support during the early stages of the learning process. 
The impact of financing on the cost-competitiveness of nuclear power is analysed in detail in 
Chapter 6. After reviewing the rationale for government involvement to enable nuclear energy 
expansion, this chapter explains the forms state financing can take as a part of a systematic risk 
allocation and mitigation strategy in which all stakeholders, including society, have a key role.  

Finally, Chapter 7 presents the conclusions and main policy recommendations elaborated 
from the findings of this report. 

Figure 7: Report structure 
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2. Nuclear production costs today 

2.1 The impact of investment cost and risks on the economic performance of nuclear 
power 

As highlighted in Chapter 1, nuclear energy is an essential part of future low-carbon energy 
systems. According to the International Energy Agency (IEA), however, its deployment rate is 
not on track largely due to the costs and risks associated with new nuclear construction projects. 
This chapter provides the concepts and insights necessary to understand the main cost drivers 
and identify potential key cost reduction areas. 

The cost of the electricity provision can be divided into several categories (Box 2), but 
reducing plant-level costs is the sole object of this report. Any cost reductions in this area will 
have a direct positive effect on the full cost of electricity provision. 

 

Box 2: The full cost of electricity provision 

Electricity provision costs fall into three different categories. The first category is plant-level costs, 
the reduction of which for the case of nuclear technology is the focus of this study (Figure 8). 

The second category concerns electricity system costs, involving the transmission and distribution 
grid. It includes the costs that plants impose on the system to extend, reinforce and connect to the 
grid, as well as costs to maintain spinning reserves or additional dispatchable capacity when the 
output of some technologies (typically wind and solar photovoltaic) is uncertain or variable. The 
Nuclear Energy Agency (NEA, 2019) has formulated a comprehensive exercise to quantify the 
extent of system costs with high shares of nuclear and renewable resources. 

Figure 8: Electricity provision cost categories 

  
                                   Source: NEA (2018), The Full Costs of Electricity Provision. 

The third cost category quantifies the impact of a generation technology on individual and 
community wellbeing. This category covers a multitude of social and environmental costs (and 
benefits), among them impacts on local and regional air, water and soil pollution, climate change, 
the consequences of major accidents, land use and resource depletion. These costs also include 
the effects of different power technology choices on security of supply, employment and regional 
cohesion, and on innovation and economic development. 
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Box 2: The full cost of electricity provision (cont’d) 

The full cost of energy provision is thus the sum total of all three categories. 

It is important to point out that, in the absence of regulatory intervention, grid-level system costs 
and external costs are borne by society as a whole and not by the party that incurred them. 
A number of policy measures can internalise external costs, including standards and technical 
regulations, pollution taxes and new markets such as for emissions trading, as well as better 
information dissemination and research. Closing the knowledge gap is also part of transitioning to 
sustainable electricity systems; NEA (2018) covers all these aspects in more detail. 

As with any other electricity generation technology, nuclear plant-level costs5 represent all 
the expenses required to finance, build, operate and decommission a plant. The “build” dimension 
corresponds to overnight construction costs, and all the costs of operating the plant fall into operations 
and maintenance costs. Cost related to financing, contingencies and decommissioning are to be 
added to compute the levelised cost of electricity (LCOE)6 (see Table 2). 

Table 2: Cost breakdown for nuclear power levelised cost of electricity 

Levelised 
cost of 
electricity 
(LCOE) of 
nuclear 
power 

Levelised 
capital 
costs 

Capitalised 
investment 
costs 

Overnight construction costs (OCC): 
includes the materials, components, 
manpower and cost of capital required to 
design, construct and commission the plant. 

Capitalised financial costs (CFC): includes 
interest during construction (IDC) and 
related fees. 

Return of capital: the cost of capital, which is a combination 
of the cost of debt (i.e. loan) and required return on equity 
(from the shareholders). IDC can also be added to this cost 
category to isolate the overall financing costs. 

Operation and 
maintenance costs 

Operations and maintenance (O&M) 
costs: all costs related to staffing, 
consumables and recurring maintenance 
activities necessary for safe operations once 
the plant has been built and commissioned. 

Note: Calculations based on OCC of USD 4 500 per 
kilowatt of electrical capacity (/kWe), a load factor of 
85%, 60-year lifetime and 7-year construction time at a 
real discount rate of 9%. 

Fuel cycle cost: cost of the fuel used to 
produce electricity. In the case of nuclear 
power, includes costs related to mining, 
enrichment and the manufacture of fuel 
assemblies to be loaded in the core 
(i.e. front-end activities), as well as to 
managing the used nuclear fuel and waste 
(i.e. back-end activities).  

Decommissioning costs: Costs associated with dismantling the plant 
once it has reached the end of its lifetime and returning the site to 
greenfield state. 

5. In this report, this term is used indistinctly alongside other terms such as “generation cost” or
“production cost”, which refer to the same concept.

6. LCOE cost breakdown does not include taxes.

OCC
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Every five years, the NEA and IEA jointly publish plant-level costs in Organisation for 
Economic Co-operation and Development (OECD) countries for all generating technologies in 
the Projected Costs of Generating Electricity series (IEA/NEA, 2010 and 2015).7 To introduce the costs 
and basic economics of nuclear power, a comparison with combined-cycle gas turbine (CCGT) 
plants is proposed to highlight the contrasting economic patterns of these technologies.  

The cost of new nuclear is essentially dominated by capital costs, which make up 72% of 
total production costs (see Figure 9). In addition, they are mostly fixed8 and can, to a large extent, 
be considered a “sunk” cost.9 O&M costs represent 16% of total generation costs, and they can 
also be considered fixed except for a small portion allotted to staff changes, materials and 
training needs. Fuel cycle costs make up 12%, and these expenses vary depending on the 
amount of electricity generated. The remaining 0.1% corresponds to decommissioning costs. 
This activity has very little effect on overall production costs given the long lifetimes (typically 
60 years) of recent nuclear designs. 

Figure 9 also illustrates that, under the same assumptions, most nuclear costs are fixed (up 
to 87%). Distinguishing between fixed and variable costs is particularly useful to indicate how 
much a technology is exposed to electricity market risks. Assets with high shares of fixed costs, 
such as nuclear power plants, have higher inertia, which impedes their capacity to react quickly 
to electricity price shifts and makes them more sensitive to market downturns.10 

For instance, when wholesale electricity prices are low, both nuclear and CCGT face revenue 
losses. The difference is that even if nuclear power plants stop operating, they still have to 
recover a large portion of their fixed costs, whereas CCGT plants may choose to stop operating 
to avoid further losses, as most of their costs (>70%) are variable fuel costs.  

Among other considerations, investors also take into account the time value of money, or the 
preference to receive a certain amount of money today rather than in the future, depending on 
the potential for that money's value to increase over a given period. At the same time, the 
potential risk of investment decisions must be remunerated. Therefore, when capital is being 
raised for a particular project, an interest rate is established according to whether financers 
judge the investment worth the risk compared with the expected return. This interest rate 
accounts for the cost of capital of a project, which is part of the capital costs (see Box 3). 

What makes nuclear projects particularly sensitive to risk, as represented in the cashflow 
structures in Figure 9, are the high fixed upfront investment costs during the early development 
and construction phases, combined with long delivery times that tend to delay the first 
revenues, which are particularly important in deregulated electricity markets. Uncertainties 
that lead to higher-than-expected investment costs and delivery times (the trend for most 
recent nuclear projects western OECD countries) are perceived negatively by investors, who will 
ask for higher investment returns, thereby increasing the cost of capital. Nuclear generation 
costs will rise as a result, reducing the chances of attracting funding (see Figure 10). 
Nevertheless, once the plant is in operation, costs remain low and predictable for a long period 
of time. 

7. Preliminary data from the 2020 edition of this publication, currently under development, has been used 
to compute most of the cost figures presented in this chapter.

8. Incurred independently of the amount of electricity produced.

9. Not all investments in fixed capacity are irreversible investments in the sense of being “sunk” costs.
This depends on the possibility to transfer, at a reasonable cost, the initial investment from one market
to another. However, investments in electricity generation capacity can be considered irreversible due
to difficulties in physically moving the plants; electricity market competition based on marginal (and
thus variable) costs; and limitations associated with interconnections (NEA, 2015).

10. This is in fact the case for all low-carbon investments (wind, solar power, nuclear, etc.). 
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Figure 9: Generation costs and cashflow structures  
of nuclear power and CCGT plants, 2020 

Nuclear power CCGT 

  

  

  
Notes:. Average cost share per megawatt hour (MWh) in OECD countries; real discount rate of 7%. 

Sources: NEA (2015), Nuclear New Build: Insights into Financing and Project Management, (IEA/NEA, Forthcoming), Projected Costs of 
Generating Electricity 2020. 
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Conversely, CCGT plants have low and predictable investments costs but relatively high 
variable production costs due to considerable fuel-related expenditures. Uncertainties are 
essentially concentrated in the operations phase, as gas and CO2 prices are subject to a certain 
amount of volatility. This cashflow structure may, however, create a more attractive risk profile 
for investors, as it anticipates a more rapid first revenue generation with a more affordable 
initial investment. In addition, as most budgeted expenses materialise in the long term, it is 
possible to exit the market with a smaller economic penalty. As illustrated in Figure 10, CCGT 
production costs are hardly impacted by the cost of capital. 

Figure 10: Generation costs as a function of the cost  
of capital, nuclear power vs. CCGT 

 

Nuclear production costs are therefore especially exposed to the cost of capital. 
Construction costs and delays are also key parameters, and the consequences of nuclear project 
delays are twofold: 

• Impact on financing: The longer the construction period, the higher the interests 
accumulated and the greater the capital required. These additional costs increase the 
overall financial burden, raising perceived risk for investors. If new delays appear, 
investors may request even higher returns, triggering a snowball effect. Furthermore, 
construction delays also postpone revenue generation. 

• Impact on construction costs: Most nuclear power plant construction activities take 
place on-site, requiring considerable manpower and heavy equipment that is, by nature, 
fixed (e.g. cranes) and cannot be quickly adapted to changes in the project environment. 
Consequently, lower productivity due to less-efficient use of personnel and idle 
equipment during delays raises overall construction costs (Locatelli, Bingham and 
Mancini, 2014). 

These impacts may shift a nuclear project’s break-even point11 significantly. For instance, 
for a three-year delay, the break-even point is reached around ten years later, further reducing 
the attractiveness of nuclear investments (SFEN, 2018). On-time completion is therefore an 
effective lever to limit nuclear new-build cost and risk escalation.  

Because capital costs figure so largely in the final generation costs of new nuclear, the next 
chapters of this report explain different ways of reducing capital costs to make nuclear 
technology more competitive (reducing O&M costs, which have a more limited impact, are 

 
11. The production level at which total product revenues equal total expenses. When this point is achieved 

depends on the cost and revenue cashflow structure. 
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outside the scope of this study). Furthermore, comparisons with CCGT plants show that the 
high upfront capital outlays associated with nuclear investments make them more sensitive to 
project risks, and any delays and cost overruns rapidly undermine their economic performance 
and, ultimately, their capacity to attract and secure funding. Completing construction on time 
and on budget is therefore an essential first step to de-risk nuclear projects and unlock future 
cost reductions. 

As it is clearly necessary to reduce investment costs, the next section provides more 
detailed cost breakdowns and also prioritises items that should be tackled to achieve significant 
cost reductions. 

 

Box 3: Cost of capital and nuclear risk premium 

Most projects are financed through a combination of debt and equity. A common approach to 
derive the cost of capital consists of computing the weighted average cost of capital (WACC) 
assigning different weights to the various sources of financing. In this process, all else being equal, 
private investors put a price on the underlying risk of a specific project; this is known as a risk 
premium. The perception of risk premium is influenced significantly by the degree of public 
investor involvement (see Chapter 6).  

The risk premium specific to nuclear power (compared with other energy projects under the same 
market conditions) is based on uncertainty stemming from recent Gen-III final cost and scheduling 
issues and can also be interpreted as a sort of “nuclear risk premium” (IAEA, 2008). All these factors 
are reflected in the WACC of a project and tend to increase the cost of capital and hence the LCOE. 
Given the high capital intensity (USD/kWe) involved, the impact is particularly acute for nuclear 
projects (see Figure 10).  
 

2.2 Nuclear investment cost breakdown 

As indicated above, the investment costs of a nuclear power plant comprise all the elements 
required for its design, construction and commissioning. This covers expenditures for materials, 
components and equipment and their installation, as well as personnel wages and the cost of 
the capital involved – representing the total capital at risk before operations. Investment costs 
can then be divided into OCC and capitalised financial costs. 

The OCC covers all the costs of building an asset independently of the time necessary for 
its design and construction. This metric assumes that all expenses are incurred “overnight,” 
neglecting the effect of time in terms of financial interests or any discounted payments. It is the 
intrinsic cost of a technology without the impact of financial conditions that are, typically, 
country- and project-specific. This cost category is usually normalised to capacity (e.g. USD/kWe). 

Conversely, capitalised financial costs account for the effect of time on the funding of 
projects – essentially the interest paid to investors during the construction period (the IDC). 
Capitalised financial costs therefore increase with the lead time of a project and, as a result, 
vary significantly from one project to another. The impact of the cost of capital and project lead 
times on capitalised financial costs is illustrated in Figure 11.  

Capitalised financial costs can make up more than 20% of total investment costs per kWe, 
especially for projects that take more than five years to construct and have a cost of capital 
higher than 7% – the case for most nuclear projects under construction in OECD countries. 
Important financing cost savings can therefore be achieved if capital is accessed under more 
favourable conditions (i.e. lower cost of capital), for instance with higher government 
involvement in the financing scheme. The lead-time impact becomes more noticeable as the 
cost of capital increases. 



NUCLEAR PRODUCTION COSTS TODAY 

UNLOCKING REDUCTIONS IN THE CONSTRUCTION COSTS OF NUCLEAR: A PRACTICAL GUIDE FOR STAKEHOLDERS, NEA No. 7530, © OECD 2020 35 

Figure 11: Portion of IDC in total investment costs per kWe  
as a function of capital costs and construction period 

 
 

Cost of capital 
Construction period 

3 years 5 years 10 years 

3% 5.8% 8.6% 15.3% 

7% 12.8% 18.7% 32.4% 
10% 17.6% 25.5% 43.0% 

Note: Calculations based on OCC of USD 4 500/kWe. 

The OCC can, in turn, be split into several subcategories. There is no generic way to proceed, 
as the level of detail and scope of these categories may be adjusted according to the project’s 
characteristics, type of contractual arrangement, accounting rules, and information and cost 
management systems. Nevertheless, three main categories are typically identified: contingency 
costs; owner costs; and engineering, procurement and construction (EPC) costs. 

Construction contingency costs 

Contingencies are a way to deal with the unexpected. The US National Energy Technology 
Laboratory (NETL) defines project and process contingency provisions as being 

included in the estimates to account for unknown costs that are omitted or unforeseen 
due to the lack of complete project definition and engineering. Contingencies are added 
because experience has shown that such costs are likely and expected to be incurred 
even though they cannot be explicitly determined at the time the estimate is prepared. 
(NETL, 2011) 

The number of contingencies also evolves as projects mature, as information gathered after 
several construction projects increases the accuracy of new estimates and thus reduces the 
potential for unforeseen costs. Projects at low levels of maturity usually include contingencies 
of 30-50% in their estimations of total OCC, whereas for projects at more advanced stages of 
learning, contingency provisions drop to 10-15% (D’haeseleer, 2013). 

High contingency levels can also result from poor risk allocation due to inefficient supply 
chain contracts schemes. A University of Chicago study found that the OCC escalation observed 
in recent US nuclear projects could be explained, to a large extent, by the accumulation of 
contingencies arising from several companies at different levels of the supply chain working in 
an insular manner with their own scope of risks, trying to avoid the penalties of further losses 
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(EPIC, 2011) (this situation is explored in more detail in Chapter 3). Contingencies can also be 
applied to other cost parameters, such as IDC costs to account for underlying reactor 
design/construction schedule uncertainty, and O&M costs to counteract reactor performance 
unpredictability. 

Owner costs  

The scope of expenses borne by a project’s owner varies depending on the owner’s capabilities 
and thus on the extent of EPC works. The IAEA (2011) comprehensively lists expenses that could 
be included in the owner’s scope: 

• general administration, project management, legal and financial advisory services; 

• site selection and licensing, environmental monitoring and preparatory works; 

• site support infrastructure such as electrical interconnections, water supply, roads and 
harbours; 

• licensing and permitting, interfacing with regulatory bodies; 

• public relations; 

• taxes and legal fees; 

• preoperational costs.  

Various authors suggest that owner costs account for 15-20% of OCC (D’haeseleer, 2013). 

Engineering, procurement and construction costs  

After contingencies and owner costs are subtracted from the OCC, the remaining expenses are 
the EPC scope. This category includes all activities related to project design, procurement, 
construction, commissioning and handover to the plant operator. Consequently, this category 
covers the greatest portion of a nuclear project’s OCC and, just as important, most of the risks.  

Similar to owner costs, EPC expenses depend on the final extent of EPC activities, which is 
determined by the capabilities of the owner and the different contract schemes adopted for the 
project. Elements such as materials, components, on-site equipment and facilities to support 
construction and civil works, the manpower required for the installation, and project 
engineering, supervision and management are usually part of the EPC domain.  

Based on information and categories detailed above, Figure 14 provides a representative 
breakdown of investment costs per kWe of nuclear power plants in OECD countries. EPC claims 
more than 50% of the total investment costs, followed by IDC (~25%) and owner costs and 
contingencies (15% each).  

The following sections further develop the breakdown of nuclear investment costs. 
Investment cost evaluations are broken down primarily by:  

• direct versus indirect costs; 

• labour versus materials; 

• components and recurring versus nonrecurring costs.  

The first two are static and limited to the EPC scope, whereas the third, covering all 
investment costs categories, is more dynamic (i.e. it has a temporal dimension) and allows for 
the identification of potential savings associated with mobilisation of the supply chain. 

2.2.1 Direct versus indirect costs (EPC scope) 

Table 3 presents a generic breakdown of the EPC scope. Direct costs encompass expenses directly 
related to the cost object: for a nuclear power plant, civil works, heavy components and other 
equipment, and the labour employed in construction (see Section 2.2.2). Indirect expenses 
concern support activities that cannot be directly traced to the cost object but are indispensable 
for its delivery. In Table 3, these support activities are referred as services provided during plant 
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construction, related to engineering and design, procurement, project management and field 
supervision, quality assurance and testing, and commissioning and start-up. 

Early (i.e. pre-conceptual, conceptual, preliminary, etc.) design activities, supply chain 
qualification and certification, and licensing efforts prior to the building of a first plant, are also 
important indirect cost contributors, especially for the first unit of a nuclear programme (see 
Section 2.2.3). 

Table 3: Generic EPC cost breakdown 

Direct costs 

Civil structural works 
Reactor plant equipment 
Turbine plant equipment 
Electric plant equipment 
Main heat rejection system 
Miscellaneous plant equipment 

Indirect costs 

Engineering and design services 
Project management and field supervision services 
Quality assurance and testing services 
Commissioning and start-up services 

 

The Generation IV International Forum (GIF, 2007) provides more comprehensive EPC 
breakdowns by direct and indirect cost items. 

Furthermore, consulting the various public EPC cost estimates performed in the last ten 
years reveals the distribution and evolution of direct and indirect costs within the EPC scope 
(Figure 12). Following the investment trend for most recent nuclear projects, EPC costs have 
been rising steadily but indirect cost are the main driver of these cost overruns. 

Figure 12: Evolution of estimated direct and indirect expenses  
within EPC costs for nuclear power plants 

 

This can be explained by the fact that, as part of the technology maturation process 
described in Chapter 1, indirect expenses have proven to be higher than previously expected. In 
fact, the rising trend in indirect costs largely reflects additional expenses for engineering work 
related to design completion, changes during construction and regulatory interactions, as well 
as to supply chain qualification and development. These cost contributors have been confirmed 
in the various cases analysed for this report (see Chapter 3). 
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These results show that indirect costs should not be neglected. According to more recent 
estimates, they may account for an even greater share of total EPC costs than direct expenses do 
(approximately 53%, compared with 47% for direct costs) (ETI, 2018). This suggests that cost 
issues associated with nuclear power stem principally from project governance and organisation 
rather than from system materials and components.  

2.2.2 Materials and components versus labour (EPC scope) 

An alternative way of breaking down EPC costs is to separate the materials and components 
involved in plant construction from the labour that goes into design, installation, supervision 
and testing. The results of this analysis, limited to direct costs, is presented in Figure 13.  

In terms of materials and components, reactor systems and turbine plant equipment 
account for more than 60% of total costs. Some materials and components must meet nuclear-
grade standards, which raises their final cost significantly.12 In terms of manpower, civil works 
are the more labour-intensive activity, making up 50% of total direct labour needs. Overall, 
around 30% of direct costs are attributable to direct labour and the remaining 70% to materials 
and components.  

Figure 13: Materials and components vs. direct labour in direct EPC cost breakdown 

Direct EPC costs 

Materials and components Labour 

  

 
 

A more recent evaluation from the Energy Technologies Institute finds that 40% of direct 
costs and 80% of indirect costs are labour (ETI, 2019). Using values for 2018 taken from Figure 12, 
it can be estimated that labour expenses represent approximately 61% of EPC costs, 13  the 
remaining 39% being essentially for materials and components.  

 
12. Mainly because of the additional qualification tests, quality assurance requirements and 

documentation necessary to gain nuclear-grade certification. Additionally, nuclear-grade materials do 
not currently benefit from the volume effect of industrial-grade components due to their specific design 
and manufacturing process. 

13. 47%*0.4 + 53%*0.8 = 61.2%. MIT reports similar figures, with direct labour plus field and home 
engineering representing 60% of total costs (EPC and owner costs) (MIT, 2018). 
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When assessing the impact of labour on nuclear investments, it is necessary to distinguish 
between salary and productivity. A recent Massachusetts Institute of Technology (MIT) study 
concluded that “while differences in labour rates play an important role14 they do not account 
for all the variations in overnight construction costs observed in nuclear plant projects around 
the world” (MIT, 2018), suggesting that productivity rates should receive further attention. In 
fact, the same study illustrates how productivity rates in the construction industry have been 
falling in western OECD countries compared with other regions such as China or Korea, where 
rates have been trending upwards. 

Closer examination of materials (or commodity) usage indicates that materials may make 
up almost 12% of direct EPC costs (EPIC, 2011). The most-used materials during nuclear 
construction are piping, accounting for 30-38% of material expenses, and concrete, responsible 
for 24-29%. The portion for concrete is even higher if 35% of the steel cost (for rebar) is included 
(i.e. in which case concrete and rebar together account for 31-37% of the commodity costs). 

These cost data illustrate the importance of indirect costs and labour in the EPC scope. 
D’haeseleer (2013) stresses the dominance of labour in EPC costs, especially because of the need 
for highly skilled labour (both technicians and engineers) and a substantial portion of additional 
indirect services (i.e. project-, licensing- and quality-related). The MIT (2018) reaches similar 
conclusions, with civil works, site preparation, installation and indirect expenses (essentially 
labour-intensive engineering oversight) representing around 72-83% of EPC and owner costs 
combined. 

A general breakdown of nuclear investment costs including the different EPC breakdowns 
described above is presented in Figure 14. 

Figure 14: Nuclear power investment cost breakdown  
per kWe in OECD countries 

 

 

 

 

 

 
Notes: Average costs per kWe in OECD countries. IDC based on a cost of capital of 7% and construction time of 7 years. Owner costs and 
contingencies assumed to be 30% of total OCC. EPC costs comprise direct expenses (47%) and indirect (53%). EPC scope also divided into costs for 
labour (61%) and materials and components (39%). Labour includes both indirect and direct labour. See Figure 13 for a more detailed breakdown 
for materials and components and their associated direct labour. 

Source: IEA/NEA (Forthcoming), Projected Costs of Generating Electricity 2020. 

 
14. For comparison, labour rates in China can be ten times lower than in the United States (MIT, 2018). 
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2.2.3 Recurring versus nonrecurring costs (all investment cost categories) 

Although the different cost breakdowns presented in the previous section are useful to 
determine the categories that contribute the most to final nuclear investment costs, they fail to 
capture the positive effects of the learning-by-doing process that can be expected with the 
construction of several units with similar characteristics (i.e. the series effect). To better 
understand these potential benefits, it is necessary to introduce cost categories that take the 
temporal dimension into account.  

Projects in the early development phase of the learning curve (see Box 1) may incur costs 
inherent to the maturation process of any technology, which are essentially borne by the first 
unit of the series, also called first-of-a-kind (FOAK). These expenses “should”15 be incurred once 
in the learning process and amortised by subsequent replications until extended learning or 
nth-of-a-kind (NOAK) conditions are reached. These costs can be defined as “nonrecurring”16 
and usually include design and testing, licensing and certification, and supply chain training 
and qualification, which are essentially of an indirect nature (see Section 2.2.1). Nonrecurring 
costs can add approximately 30-35% to the OCC of a first reactor (EPIC, 2011), or USD 1 350/kWe 
to USD 1 575/kWe according to Figure 14 cost estimates.  

Conversely, as learning advances with the deployment of subsequent units, several 
activities are repeated with every new construction; the associated costs are therefore defined 
as “recurring” and encompass both direct and indirect expenses. As highlighted by the REDCOST 
experts, barring any major structural change to the basic design, recurring cost should 
experience a rapid decline with the deployment of several reactors (both direct and indirect 
expenses), with each unit carrying a portion of the nonrecurring cost as part of the designer 
amortisation strategy. Figure 15 illustrates the temporal distribution of recurring and 
nonrecurring costs. 

It is important to highlight that in a changing and unpredictable environment, some 
nonrecurring cost may become recurring if normal learning process dynamics are altered, 
leading to cost overruns and delays. This can happen when a new regulatory requirement is 
introduced, or a design is exported to countries with different regulatory regimes. These 
situations and potential cost-effective solutions are explored in Chapter 4. 

Figure 15: Temporal dimension of recurring  
vs. nonrecurring nuclear investment costs 

 

Source: Based on GIF (2007), Cost Estimating Guidelines for Generation IV Nuclear Energy Systems. 

 
15. The difference between what a nuclear plant “should” cost and “could” cost is discussed in Part 2. 

16. Or as FOAK costs. 
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2.3 Assessing areas for nuclear investment cost reductions 

This chapter’s analysis permits several areas for nuclear investment cost reductions to be 
identified: 

• EPC costs are dominated by labour: Despite wage variations across the world, 
productivity rates can be improved and lead to significant cost reductions. Support 
services (i.e. engineering, project management, supervision and testing, etc.) and civil 
works can be particularly labour-intensive and should therefore be addressed first. 

• Most EPC costs are indirect: Expenses for support services and for overseeing the value 
processes tend to exceed the cost of the product itself. Better organisation and 
governance could therefore have a major impact on investment costs. 

• From a design perspective, the reactor and turbine plant equipment are the most 
expensive components: Design optimisation should target these systems first, as well as 
concrete and rebar, and piping commodity usage. 

• As part of the maturation process of any technology, the first unit bears significant 
nonrecurring costs: These are mostly indirect (i.e. related to detail design, licensing, supply 
chain qualification, etc.), and could be effectively lowered through the construction of 
additional units of the same design as long as the environment remains stable. 

• Financial costs have a significant impact on levelised capital costs: They can be reduced 
with a lower cost of capital and shorter lead times. 

Figure 16 compares nuclear investment costs for recent projects in western OECD countries 
(i.e. Europe and the United States) and in the rest of the world (ROW) to convey the magnitude 
of potential cost reductions. ROW values are based on cost estimates for countries such as the 
United Arab Emirates, Russia and China.17  

Indirect EPC costs and IDC are the areas in which higher cost reductions could be achieved 
in absolute terms. Direct cost reductions are more limited, especially for materials and 
components, and may require more innovative designs and techniques that could materialise 
in the longer term. 

Figure 16: Nuclear investment costs in western OECD countries vs. rest of world 

 

Source: Based on ETI (2018), The ETI Nuclear Cost Driver Project: Summary Report. 

 
17. The results of this chart must be analysed with caution. First, conditions in ROW and western OECD 

countries may be relatively different in terms of labour rates and commodity prices. Second, supply 
chain maturity differs from ROW to western OECD countries. In fact, conventional nuclear construction 
in ROW countries has already reached the later stages of the learning curve, while western OECD 
countries are just at the end of the technology maturation process, as indicated in Chapter 1. 
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Part 2: Nuclear construction  
cost reduction drivers 

This study identifies eight drivers to reduce nuclear construction costs, as shown in Figure 17. 
These drivers unlock positive learning and propel continuous improvements to large Gen-III 
reactor concepts. Implementing these cost drivers will also help attenuate the technological, 
organisational and regulatory risks associated with new nuclear deployment This part of the 
study sets out the learning curve for nuclear projects, first drawing on the lessons learnt from 
recent first of a kind projects, then extracts short term learning opportunities, before identifying 
longer term cost reductions stemming from innovation and harmonisation. 

Figure 17: Nuclear cost and risk reduction drivers 

 
 

Technology Delivery Regulation

Design
maturity

Effective
project

management

Regulation
stability &

predictability

Multi unit &
series effects

Design
optimisation

Technology &
process

innovation

 Revisiting
regulatory

interactions

Harmonisation:
licensing,
codes &

standards

FOAK reactor What new nuclear should cost post-FOAK
reactor

What new nuclear could cost NOAK reactor

O
ve

rn
ig

ht
 o

ns
tr

uc
tio

n 
co

st
s 

(U
SD

/k
W

e)

SMRs and advanced reactorsPolicy





CORE NUCLEAR CONSTRUCTION COST DRIVERS: LESSONS FROM HISTORICAL AND RECENT PROJECTS 

UNLOCKING REDUCTIONS IN THE CONSTRUCTION COSTS OF NUCLEAR: A PRACTICAL GUIDE FOR STAKEHOLDERS, NEA No. 7530, © OECD 2020 45 

 

3. Core nuclear construction cost drivers: Lessons  
from historical and recent projects 

Important insights can be derived from historical and recent first-of-a-kind (FOAK) project 
experiences, complementing the cost breakdown analysis of Chapter 2. Reviewing lessons 
learnt from successful and challenging projects has identified some common cost drivers.  

Four categories in particular determine whether there will be delays and cost overruns: 

• design and supply chain maturity; 

• effectiveness of project management; 

• nuclear safety regulation stability and predictability; 

• policy framework (in terms of political leadership and multi-unit projects). 

These four drivers are not directly discernible in cost-figure analyses, and quantitative 
scrutiny must be complemented by qualitative analysis of project conditions. Due to the 
complexity of nuclear projects, these factors are intertwined, so that undertaking a root-cause 
analysis to quantify the specific role of each driver can be challenging and will eventually 
require some intuitive judgement. 

This chapter is based primarily on lessons learnt from recent FOAK projects that have 
encountered significant difficulties. Understanding what happened during these projects is 
critical to assess to what extent their costs overruns and delays can be attributed primarily to 
cost drivers specific to FOAK reactors, so that mistakes are not repeated. In parallel, lessons 
from historical experience in selected OECD countries allow for further comparison among 
difficult projects as well as among those that successfully avoided obstacles. Furthermore, 
parallels can be drawn and lessons learnt from other industries in which investments in large-
scale infrastructure projects (i.e. megaprojects) are happening. 

 

Box 4: What does first-of-a-kind mean? 

Many usages are common when referring to Gen-III FOAK reactors, but this report rests on the 
following definitions: 

• Pre-FOAK: phase prior to the construction start of a recent Gen-III reactor. 

• FOAK: First projects of Gen-III designs. In some cases they may not strictly be the first reactor 
built for a given design but, in the absence of a governance model to ensure the effective 
transfer of learning from one reactor to another, they are also considered as FOAK in this 
report.  

• Post-FOAK: projects that should be able to take advantage of the learning described in this 
chapter to reduce costs, seizing on opportunities described in Chapter 4. 
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3.1  Developing a mature design and a supply chain before construction begins 

The maturity of the design and of the supply chain before construction begins are among the 
most significant cost determinants of recent nuclear new-build projects.  

Recent FOAK projects offer particularly relevant lessons on the impact of a lack of design 
maturity on overnight construction costs (OCC). AP1000 and EPR construction projects in Europe 
and North America especially show that it was one the main reasons for combined delays and 
costs overruns.  

Given the scale and long lead times of nuclear projects, developers are often pushed to start 
construction before the design is fully completed. In practice, this means that some of the 
details needed for the later stages of construction will be completed during the course of 
construction to reduce the lead time between the final investment decision and the 
construction start date. The same rationale applies to the supply chain. 

Recent Gen-III FOAK projects often started with a low level of design maturity or continued 
with construction despite safety regulation changes that required significant design changes. 
In addition, a lack of supply chain engagement resulted in manufacturing and procurement 
challenges that made it difficult to deliver this new generation of nuclear reactors. Optimism 
bias, which magnifies these challenges by leading developers to underestimate costs at the early 
design stages, has been identified as a recurrent issue in complex engineering projects (see 
Box 5). 

 

Box 5: Optimism bias during the design stages of complex engineering projects 

For complex engineering projects, cost estimates and their associated uncertainties during the early 
stages of the design process may be subject to optimism bias. Merrow, Phillips and Meyers (1981) 
provide insights on the evolution of cost estimates and associated uncertainties as a technology 
develops. Their study reviews 44 large engineering megaprojects, including chemical plants, public 
works and nuclear installations. Findings highlight the existence of optimism bias in project cost 
estimates, as final construction costs were often twice the initial estimates (Figure 18).  

The traditional view in cost estimates is to anticipate that cost uncertainties will be reduced as the 
project develops, but this overlooks the fact that cost reassessments will remain consistently below 
final costs reported upon project completion.  

Several complementary factors help explain this trend: 

• Difficulty in capturing all the cost uncertainties and in accurately defining project boundaries 
during the early stages due to the complexity of these large-scale engineering projects. 

• Cognitive bias of the engineers in charge of cost estimates and their management, which leads 
them to attach less importance to potential costs increases. 

• Reporting low-cost estimates as a strategic decision to secure early support from stakeholders. 

Recent cost estimates from ongoing and future nuclear new-build projects further illustrate this 
point (MIT, 2018):  

• Advertised OCCs for the AP1000 have increased from approximately USD 2 000/kWe, to 
USD 4 500/kWe, to USD 8 600/kWe.  

• Early pre-conceptual cost estimates for NuScale were USD 1 200/kWe but are now projected to 
be approximately USD 5 100/kWe. 

• The OCC for the FOAK Flamanville EPR project increased from EUR 2 000/kWe to EUR 7 500/kWe 
(Folz, 2019). 
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Figure 18: Optimism bias: Ex-ante project cost estimates vs. ex-post costs 

Ex-ante Ex-post 

Source: Merrow, Phillips and Meyers (1981), Understanding Cost Growth and Performance Shortfalls in Pioneer Process Plants. 

3.1.1 Design maturity before start of construction 

Designing a new reactor takes several years, from conceptual to detailed design. For a nuclear 
project, this typically requires several million man-hours of engineering studies and 
certification by the safety authority. Even then, the development of a construction and work 
plan is required for the design to be considered mature, in order to translate design 
specifications into detailed supply chain requirements and plans for each construction stage. 
Each key design stage has associated technical, business and regulatory activities (Figure 19).  

Figure 19: Typical scope of design activities 

Conceptual 
design

• Business case
• Pre-project planning 
• Review of requirements

Preliminary 
design

• Schematic layouts
• Construction schedule
• Cost estimation

Basic 
design

• Budgeting
• Execution plan
• Safety case and environmental impact assessment

Detailed 
design

• Specification and qualification of suppliers
• Administrative authorisation

Feasibility

Constructability

Financing

Financing

Site licence application

Licensable design

Construction licence application



CORE NUCLEAR CONSTRUCTION COST DRIVERS: LESSONS FROM HISTORICAL AND RECENT PROJECTS 

48 UNLOCKING REDUCTIONS IN THE CONSTRUCTION COSTS OF NUCLEAR: A PRACTICAL GUIDE FOR STAKEHOLDERS, NEA No. 7530, © OECD 2020 

A lack of design maturity can lead to numerous adjustments during construction and, given 
the complexity and scale of nuclear projects, result in delays and cost overruns. Recent FOAK 
projects in western OECD countries are a prime example of such risks. 

Figure 20 presents quantitative evidence for the correlation between design completion and 
final OCC for recent anonymised nuclear Gen-III nuclear projects. These data were consolidated 
by the ETI (2018), which developed a database from recent nuclear projects and identified that 
design completion ranks as a key cost determinant. 

Figure 20: Percentage of design completed and total capital costs 

 

Source: Based on ETI (2018), The ETI Nuclear Cost Driver Project: Summary Report. 

Lessons from EPR projects 

The EPR reactor was initially developed in the early 1990s as part of a French-German 
consortium led by Framatome (later Areva) and Siemens. In 1992, the beginning of the 
conceptual design phase aimed to combine technological features from the French N4 reactor 
and the German Konvoi reactor, with a core focus on safety and lower operational costs through 
higher availability and increased reactor size. The main technological choices were then jointly 
approved by the French and German safety authorities, leading to the 1997 publication of a basic 
design report. Efforts were suspended, however, following changes in public opinion towards 
nuclear in Germany and, to a lesser extent, France. This resulted in a phase of design 
optimisation, but with limited progress was made towards a detailed design in the absence of a 
clearly identified new-build project. 

In 2003, Areva and Siemens won a competitive tender to build the first EPR at Olkiluoto in 
Finland on a fixed-cost turnkey contract of EUR 3 billion. Construction began in 2005 with only 
part of the design and engineering studies completed, and without an established supply 
chain.18 At the time, anticipation of a nuclear renaissance and hopes to benefit from the first-
mover advantage in the nuclear new-build market motivated Areva-Siemens to bid at a low 
price and with an unfinished design (NEA, 2015). 

  

 
18. www.power-eng.com/articles/npi/print/volume-3/issue-3/nucleus/lessons-learned-from-olkiluoto-3-

plant.html. 

R² = 0.815
(statistically significant slope coefficient)

 0

2 000

4 000

6 000

8 000

10 000

12 000

14 000

0% 20% 40% 60% 80% 100%

In
ve

st
m

en
t c

os
ts

 (U
SD

/k
W

e)

Design Completion Percentage at Construction Start



CORE NUCLEAR CONSTRUCTION COST DRIVERS: LESSONS FROM HISTORICAL AND RECENT PROJECTS 

UNLOCKING REDUCTIONS IN THE CONSTRUCTION COSTS OF NUCLEAR: A PRACTICAL GUIDE FOR STAKEHOLDERS, NEA No. 7530, © OECD 2020 49 

Similarly, in 2007 EDF began constructing a second EPR at Flamanville at an equally low 
level of design maturity, leading to numerous design changes during construction. It is 
estimated that only 40% of the detailed design was complete when construction began (Folz, 
2019). In fact, detailed engineering studies had only just been initiated for safety, fires, external 
hazards and material qualification. At the same time, differences in the licensing frameworks 
and requirements of the French and Finnish authorities meant that both designs were 
completed in parallel with limited opportunities to learn lessons and share experience between 
the two projects. 

Figure 21: Key drivers of Flamanville 3 EPR cost overruns 

 

Source: Based on Folz (2019), “Rapport au Président Directeur Général d’EDF: La construction 
de l’EPR de Flamanville.” 

This lack of design maturity was one of the key reasons for the delays and costs overruns 
experienced by these two EPR projects. It compromised construction feasibility, made supply 
chain requirements unclear, and caused considerable reworking and design adjustments 
throughout construction. For instance, it is estimated that more than 4 500 design modifications 
were made for the Flamanville EPR project (Folz, 2019). 

Conversely, construction of the two EPRs in Taishan, China, which began in 2009, benefitted 
from the lessons of the Flamanville project as EDF was involved in both projects. 

Lessons from AP1000 projects  

The same pattern is observed in FOAK AP1000 construction in the United States. The two AP1000 
projects (Vogtle and VC Summer) were launched with incomplete designs,19 particularly in terms 
of design specification of key component manufacturing by the supply chain (Bechtel, 2016). 

The decision to start construction with an incomplete design can be partly explained by the 
timing of US policy incentives that provided tax credits for nuclear new-build projects;20 this 
accelerated the steps to construction even though the design was not completed. It is therefore 
critical that governments and policy makers consider the issue of design completion when 
establishing deadlines and milestones. 

                                                           
19. www.world-nuclear-news.org/C-US-governor-releases-report-on-VC-Summer-flaws-06091701.html. 
20. In 2006, the US federal government decided that up to 6 000 MWe eligible for production tax credits 

would be divided pro-rata among applicants filing combined construction and operating licence 
applications by the end of 2008, who had commenced construction of new nuclear units by 2014, and 
whose units entered into service by 2021. 
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In addition, similar to Europe, the FOAK nature of both these nuclear projects required 
relaunching of a domestic nuclear supply chain. Both projects were also FOAK implementations 
of a new modular construction methodology relying on off-site construction and the shipment 
of very large prefabricated modules constructed at a dedicated facility. This facility, which had 
mainly serviced the nearby petrochemical industry, had difficulties21 adapting to nuclear-grade 
construction standards for some of its deliverables. 

Lessons from other Gen-II and Gen-III designs 

Conversely, recent VVER projects in Russia and APR1400 projects in South Korea provide 
examples of new nuclear projects launched with sufficient design completion. Korea’s nuclear 
industry especially has – like Japan – a long track record of starting new-build projects with  
70-80% of the detailed design complete (Choi et al., 2008).  

For instance, the Kashiwazaki-Kariwa 6-7 nuclear reactors in Japan illustrate that FOAK 
projects can be built on time and without cost overruns when construction begins with a high 
level of design and supply chain maturity. This FOAK advanced boiling water reactor (ABWR) 
project has one of the best lead-time performances in the nuclear industry, with a record 
construction period of less than 52 months. The lessons learnt from this project in terms of 
prerequisites are (NEA, 2015): 

• detailed engineering and planning studies before construction start; 

• prudent design change controls based on the test-before-use principle; 

• detailed procurement programme at an early stage with all the necessary engineering 
documentation; 

• advanced construction methods based on previous lessons learnt, including to mitigate 
the impact of weather events on the construction schedule and to expand the scope of 
modular and factory-based fabrication for large blocks. 

3.1.2 Supply chain competences and capabilities 

For recent FOAK projects, design maturity challenges have often been compounded by shortfalls 
in supply chain competences and capabilities.  

For instance, in the case of the EPR projects, no nuclear power plants had been built in 
Europe over the previous 20 years, leading to erosion of competences and capabilities across the 
supply chain. The low-competence situation was complicated by the fact that the workforce 
involved in constructing previous nuclear reactors was reaching retirement or had moved into 
other industries in the absence of new-build nuclear projects. Regarding capabilities, important 
challenges also arose in reviving the European nuclear supply chain and implementing new 
requirements with innovative designs and changes in safety regulations.  

Similarly, the AP1000 projects had to develop a new supply chain in the United States and 
internationally, relying on companies with limited experience in the nuclear sector. The 
projects also faced specific challenges as they depended on new construction techniques, such 
as modular construction, that – combined with the lack of design maturity – made it more 
difficult to address the need for design adjustments and reworking during construction. 

Conversely, recent projects in Asia (primarily China and Korea) have benefitted from the 
fact that these countries have kept sufficiently active nuclear programmes to maintain and 
develop domestic supply chains. 

  

 
21. www.enr.com/articles/43325-witness-to-the-origens-of-a-huge-nuclear-construction-flop.html. 
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3.2  Effective project management and procurement framework 

Project management encompasses all the organisation and planning steps required for the 
construction of a new nuclear power plant. The procurement (or contracting) strategy can be 
viewed as part of this overall framework to the extent that the project management structure 
will affect procurement decisions. 

The importance of project management and procurement frameworks cannot be overstated. 
An EPIC (2011) study of costs in the US market estimated that overnight capital costs for a FOAK 
plant more than doubled from USD 2 000/kWe to USD 4 210/kWe between 2004 and 2011 (Figure 22). 
The study concluded that rising commodity prices contributed an additional USD 500/kWe to OCC, 
and owner costs a further USD 350/kWe. However, the largest contributing factors were design 
maturation (the additional cost of adapting designs to US requirements), vendor and supplier 
agreements and risk management. 

Figure 22: Factors that increase overnight capital costs 

 

Source: NEA based on data from EPIC (2011), Analysis of GW-Scale Overnight Capital Costs. 

The study does not fully quantify the breakdown of design maturation, vendor and supplier 
agreements and risk management, but it quotes outside expert views attributing the bulk of 
these rising costs to fixed- or firm-price engineering, procurement and construction (EPC) 
contracts, viewed as the primary reason for escalating nuclear capital costs. While such 
contracts provide a degree of certainty for the plant owner, it comes at the price of a significant 
premium due to caution on the part of EPC contractors. This is exacerbated by the fact that EPC 
contractors then seek to pass on the risk by negotiating similar contracts with their own 
suppliers, layering cost contingencies with margins built on margins. 

3.2.1 Transaction costs and the role of project management 

The choice of industrial organisation is central to the management of large-scale, complex 
infrastructure projects such as new nuclear plants. The economic theory of transaction costs 
developed by Coase is a useful tool to understand the rationale for different types of contractual 
frameworks (Coase, 1937). 

In concrete terms, transaction costs are factors that are not immediately quantifiable as 
goods or services themselves but that must be taken into account in costs estimates. They 
constitute a residual category that includes the often unaccounted-for, if not unquantifiable, 
costs of managing contractual arrangements between stakeholders. One of the most important 
components of transaction costs is the cost of monitoring and enforcing the quality and precise 
technical specifications of goods that have been outsourced to other companies. Given the 
quality requirements in the nuclear industry, this issue is of considerable importance. 
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A key consequence of transaction costs is the strategic behaviours that may arise among 
those involved in a contract through two major factors:  

• Contracts cannot be permanently renegotiated since negotiation itself is costly, leading 
to moral hazard. In many ways, contracts have economic characteristics akin to 
irreversible capital investment. They engage participants over a certain period, so there 
is an inevitable tension in the contractual relationship over pre-delivery investment and 
post-delivery performance.  

• Information is costly and asymmetrical. Neither side knows exactly what the other is 
really doing or capable of. 

These two factors coalesce into a third one. Since information is costly and the future is 
uncertain, contracts are always incomplete. No contract can possibly specify conditions for all 
possible contingencies. In addition, both monitoring and enforcing contract performance are 
costly. This situation can provide both sides with the possibility of a “hold up” – the ability to 
interpret, exploit or even deform the contractual relationship in a manner that lowers its cost 
or increases its profits such that the other side is willing to pay for monitoring and enforcing 
the original contract.  

This situation creates what is known in economic theory as the principal-agent problem.22 
In addressing this issue, contract design is key to align goals, primarily through offering 
incentives and monitoring the other party’s actions. In practice, the principal-agent problem is 
at the heart of the challenges new-build nuclear project management must address. It primarily 
affects the contractual framework governing the project, but also reinforces the role of 
managerial and planning processes to mitigate some of the transaction costs. 

 

Box 6: The importance of soft costs and the organisational  
dimension in nuclear power 

To build a room, only walls, doors and windows are needed; they represent the physical (tangible) 
assets of the room. However, the space inside (intangible) is what really matters and makes the 
room useful. Soft costs relate to the space inside the room, but they are usually overlooked by 
project governance schemes and have also received limited academic coverage. 

In fact, one of the main complications concerning soft costs is the lack of a clear definition. One 
key characteristic is their intangible nature. NEA, (2015) considers aspects such as “trust”, 
“experience”, “shared vision” and “leadership” as soft issues of project management. Mckinsey 
(2017) refers to soft issues in megaprojects as the “art” of project management, which involves a 
blend of leadership, organisational skills, mindsets, attitudes, behaviour and organisational 
culture. Conversely, the “science” of megaprojects – the processes, principles and theories – is 
generally well understood.  

Soft costs could therefore be defined as expenses, usually not properly accounted for by traditional 
cost management methodologies, incurred by the interaction of personnel with the processes, 
structures and mindsets within an organisation or project. As such, they depend on human capital 
resources – thus intangible by nature – not directly “owned” by the firm, but that can be managed 
properly if the right processes, structures and corporate culture are in place. Transaction costs, 
which are usually under-evaluated and depend on project structures, can be considered a category 
of soft costs according to this report’s definition.  

 

 
22. Also known as agency dilemma, the principal-agent problem occurs when one person or entity (the 

“agent”) is able to make decisions and/or take actions on behalf of, or that impact, another person or 
entity: the “principal.” This results in a conflict of interest between the two parties, as the agent acts 
solely in his/her own interests. 
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Box 6: The importance of soft costs and the organisational  
dimension in nuclear power (cont’d) 

This definition highlights the importance of organisational and management approaches in 
limiting the soft costs of nuclear power projects.  

Kotter (2012) provides insights into the organisational models needed to stay competitive in 
environments characterised by constant turbulence and disruption. Within a firm, different types 
of organisational structures cohabit. Traditionally, hierarchical structures, built on optimisation 
and specialisation, have been established to increase productivity. Although hierarchies perform 
well under predictable environments, they fail to effectively handle mounting complexity and 
rapid change. The introduction of a dual operating system that combines traditional hierarchies 
with network-like structures can be a way to address this shortcoming. While hierarchies 
co-ordinate day-to-day activities in an efficient way, networks provide higher levels of 
collaboration, diversity and dynamism needed for rapid problem-solving in complex and uncertain 
environments. Of especial importance is the role of networks to sustain knowledge.  

However, safety issue in the nuclear sector may set some limitations on network-like 
organisational approaches. Regulations require order, standards and quality control rules that 
cannot be provided effectively by a network. In addition, safety is at the core of nuclear activities 
and processes. Although safety is the overarching priority, its logic does not efficiently mobilise 
resources within a firm. In a recent publication, NIRAB (2019) indicates that, to increase nuclear 
sector productivity, a well-balanced safety and high-performance culture may be beneficial. A 
certain emphasis on high performance within an organisation is necessary to challenge current 
processes and foster their continuous improvement, without necessarily compromising safety. In 
practical terms, it could be possible to find the right balance between hierarchical and network-
like structures to minimise soft costs and hence maximise safe performance. 
 

3.2.2 Project management in practice: Key lessons from recent FOAK projects 

In practice, project management for large infrastructure projects, such as new nuclear plants, 
is faced with the trilemma of costs, quality and delivery time (WNA, 2018). It is the overall 
objective of contractual and procurement frameworks to balance these three components.  

This balance is challenging to achieve due to the occurrence of transaction costs that 
require incentives to be established and collaborative frameworks to be set up to align the 
interests and goals of all stakeholders. Organisational choices, particularly at the project team 
level, are especially important to address these challenges. 

Recent FOAK projects reveal how transaction costs can lead to hold-up problems that 
effective project management needs to address. 

Leadership and the role of the project team 

The importance of leadership in managing nuclear new-build projects cannot be overstated. 

The scope of responsibility for the project team and the project owner/operator covers a range 
of organisational and contractual arrangements. The project team will take the role of the 
owner/operator in the case of split/multi-package procurement, and it will be responsible to the 
reactor vendor and/or project consortium in the case of a turnkey contract. Regardless of the 
procurement approach chosen, given the scale and complexity of a nuclear new-build project, 
it is very important to develop a dedicated project team structure with sufficient resources and 
empowerment to enable competent leadership and ensure timely decision-making.  

First, the project owner/operator (i.e. in most cases the future utility) is central to the 
acquisition strategy, and its active involvement needs to be maintained throughout the project. 
A systematic approach to acquisition especially helps the owner to be prepared to react to 
changing situations. If a competitive acquisition process is used, nuclear power plant (NPP) 
vendors may change their strategy during the bidding process, or the bidding process may lose 
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its value due to a lack of real competition or to the unwillingness of NPP vendors to participate 
in a challenging new-build project under the given terms and conditions. Plus, partnerships and 
alliances may change during the acquisition process, which could create dramatic changes 
during the ongoing NPP acquisition process. Finally, contingency plans should always be ready 
for the owner.  

Second, it is essential to establish a strong and dedicated project team to ensure leadership 
throughout all stages of the project and efficiently address challenges. The project team will be 
responsible for developing the detailed design, securing the safety case and planning the 
procurement and construction schedule (RAEng, 2012) It will also have to establish collaboration 
with the supply chain and with external stakeholders (particularly the local community) – for 
instance to address emerging environmental and social issues (WNA, 2018). The project team 
requires a strong team leader reporting directly to the organisation’s top-level management.  

Although recent FOAK nuclear projects have followed a variety of organisational and 
procurement approaches, they share a number of lessons applicable to future nuclear projects. 

 Lessons from AP1000 projects in the United States 

US AP1000 projects – Vogtle (ongoing) and VC Summer (cancelled) – highlight the importance of 
a solid and experienced project team. Indeed, for both projects the main construction 
contractor– Stone & Webster (S&W), part of the Shaw Group – originated as an engineering 
company in the oil sector, with no previous nuclear experience. Consequently, the company’s 
senior management initially underestimated the challenges of new nuclear construction, 
particularly the quality requirements, and their lack of experience contributed to recurring 
quality assurance issues (Bechtel, 2016). In the case of VC Summer, it also led to a situation in 
which the plans and schedules were not reflective of the actual project situation. 

Experiences with these projects also underscore the need for plant owners to establish an 
experienced project management organisation to ensure that the consortium’s contractors are 
fulfilling their contractual obligations. The projects’ initial lack of resources in this area 
contributed to conflict between the EPC consortium led by Westinghouse and the plant owner, 
which hindered rapid and non-litigious adjustments to unanticipated changes in requirements 
or subcontractor performance. This amplified the contractual challenges presented in the next 
section. 

 Lessons from EPR projects 

A key lesson learnt from the Flamanville EPR project is the need to clearly define and separate 
the roles of project owner and project manager. Historically, a separate division within the EDF 
was in charge of project management for the construction of the French nuclear fleet, but 
because there were no new nuclear plants built in the 1990s this division was eventually 
incorporated into the EDF nuclear operations division.  

This organisational change resulted in the lack of a clearly identifiable project manager, as 
project oversight was shared by several teams – which changed several times. Plus, many of the 
teams were not located on-site. Furthermore, the successive managers responsible for the 
Flamanville project held this role as part of a broader management position and did not report 
directly to the EDF CEO – a clear disconnect, considering the importance of the project. 

According to Folz (2019), this had major consequences as it hampered the ability to mobilise 
resources internally and to take rapid and effective decisions on-site. The low level of design 
maturity in particular resulted in a high number of design modifications that needed to be 
addressed, but the absence of an integrated project team meant that each design change was 
treated incrementally and separately – often not by teams based directly on-site – without due 
consideration of the overall impact on project planning. It was only late in the project that 
sufficient resources were allocated to manage these design modifications.  

Conversely, the EPR units in Taishan were delivered with a well-defined project 
management structure, both in terms of the role of the project team and its direct reporting to 
the company’s top management. The same applies to current EPR construction in the United 
Kingdom (Hinkley Point C).  
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 Lessons from APR1400 projects in Korea 

The Korea Electric Power Corporation (KEPCO) led the APR1400 project from design development 
to the completion of construction. Unlike the previous OPR1000 new build projects, the utility 
took responsibility for the design of the APR1400: under its leadership, APR14000 design was 
undertaken co-operatively with a well-integrated supply chain. KEPCO Engineering and 
Construction was in charge of architecture/ engineering (A/E) and nuclear steam supply system 
(NSSS) design, while Doosan Heavy Industries & Construction Co. was responsible for 
fabrication design and KEPCO Nuclear Fuel Co. for initial core design. The Korea Atomic Energy 
Research Institute (KAERI) led the development of FOAK items for APR1400, and the regulatory 
body developed safety regulation requirements.  

As soon as the design was completed, with its standard design certification obtained in 2002, 
the utility (now the Korea Hydro & Nuclear Power Co Ltd [KHNP]) prepared for construction. Its 
main task was to complete preparations for all contracts – for A/E services, equipment and 
material manufacturing, and for construction, including construction permits (Oh, 2019) – and 
it successfully orchestrated the transition from design to construction.  

Last, the utility also directed the construction phase. The company signed a series of 
contracts for the supply of main facilities and comprehensive design service in 2006, and for the 
construction in 2007. 

Contractual and procurement frameworks 

As highlighted in Box 7 below, several procurement approaches can be considered for nuclear 
new build that will result in different outcomes in terms of risk allocation. In that respect, 
procurement plays a central role in order to align the interest of the different stakeholders, and 
in particular incentivise the different contractors. 

In addition, these contractual frameworks can further transfer some of the risks through 
different pricing structures, of which three are often used (NEA, 2015): 

• Fixed pricing: the stated price is fixed for some portion of the work throughout the term 
of the agreement (subject to typical change orders, such as those requested by the owner, 
force-majeure events or legal requirements). 

• Indexed pricing: the stated price for some portion of the work (which also depends on 
typical change orders) is subject to adjustment over the course of the project based on 
change in one or more indices. 

• Target pricing: the contractor is reimbursed for all costs it incurs plus a fee (profit), 
subject to a sharing mechanism wherein the contractor receives a bonus if the final 
project costs are below (or a penalty if the costs are above) a pre-established target price. 
Target pricing often puts an absolute limit on the contractor’s exposure to project cost 
overruns regardless of fault. 

Both the AP1000 projects in the United States and the EPR projects in Europe illustrate how 
contractual framework and pricing structure choices in nuclear construction projects can 
contribute to delays and costs overruns if the goals of all parties are not well aligned. An 
inappropriate contractual framework can amplify the consequences of lack of design 
immaturity and supply chain challenges faced by FOAK projects. 

Lessons learnt from the AP1000 and EPR highlight the counterproductive effect fixed-cost 
contracting can have on nuclear new-build projects. While the primary goal of this type of 
contract is to reduce project risk, shifting some of the risk to subsequent subcontractors means 
that each party has a risk margin. This can snowball, however, with risk margins being added 
to risks margins. In such a situation, the final cost would reflect a misallocation of risks rather 
than actual production costs. Owners need to understand that fixed-price contracts mean 
qualified contractors must include more contingencies for project risk. 

At the same time, if these risks do materialise (as happened with recent FOAK projects), this 
type of contractual framework does not provide the incentives to tackle construction challenges, 
and instead leads to litigation that makes the situation worse. 
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Box 7: Organisational and contracting approaches for new nuclear plant construction 

Constructing a nuclear power plant is highly complex, requiring the co-ordination of a wide range 
of activities: design development based on detailed technical assessments and regulatory 
requirements; procurement of equipment; civil engineering and construction; testing and 
installation of components; and commissioning of the power station. Plus, contractor and 
subcontractor co-ordination is necessary at all these stages. 

How a project’s equipment, materials and services are procured and the relationships with and 
among contractors significantly affect supply chain development. Many options are available for 
responsibility-sharing between the ultimate operator of a nuclear power plant and the principal 
supplier. The three main categories of contracts normally used for nuclear new-build projects are 
(NEA, 2015): 

• Turnkey, wherein a single contractor or a consortium of contractors takes overall
responsibility for the construction work. A turnkey approach to NPP contracting involves a
single large contract between a customer and NPP vendor (or a consortium led by such a
vendor), covering the supply of the entire plant. The vendor or consortium subcontracts any
elements of the project it cannot supply itself. The contractor thus takes full responsibility for 
delivering the plant to the customer.

• Split package (“island”), wherein overall responsibility is divided among a relatively small
numbers of contractors, each in charge of a large section of the plant. At its simplest, this
approach divides a plant into two packages: the nuclear island and the conventional or turbine 
island. More complex split-packages separate off civil construction work as well as other major 
electrical and mechanical systems. In such an approach, it is necessary to allocate overall
responsibility for design and licensing, and for reintegrating the various packages to ensure
that all the plant’s systems work together efficiently. Such overarching responsibility could be
taken by the plant owner or the main contractor.

• Multi-contract, wherein the plant’s owner or architect-engineer assumes overall responsibility
for detail engineering and plant construction. The architect-engineer typically prepares the
contracts, which are then placed by the owners. This approach gives the customer maximum
oversight of plant design and construction, but also the most responsibility for project success.
Only a few large nuclear utilities have this expertise in-house, so often when this approach is
adopted, an external A/E company will first be contracted to manage the project overall.
Breaking the project into a large number of separately supplied components and systems can
maximise the choice of supplier as well as competition, but it is likely to make the architect-
engineer’s task of co-ordinating the project more onerous.

 Lessons from AP1000 projects in the United States

In the case of the US AP1000 projects, the partnership between Westinghouse and S&W23 
contributed to a lack of incentives to resolve construction challenges and eventually resulted in 
a series of litigations. As these litigations often took place during critical periods of construction, 
they further hindered the project. This also resulted in lower mobilisation of company resources, 
and lower worker morale reduced site productivity.  

23. In the years since the EPC agreement, these contractors have gone through multiple acquisitions by
larger companies. At the time, S&W was an operating company of Shaw Group LLC, a Louisiana-based
infrastructure company initially specialised in the oil and gas industry. In 2012, the Shaw Group was
acquired by Chicago Bridge & Iron (CB&I), a large infrastructure company and energy conglomerate. In
addition, Westinghouse, which in 2008 was partially owned by the Shaw Group, was subsequently
bought by Toshiba, a Japanese industrial conglomerate, but later went into bankruptcy and was taken
over by a private equity group, Brookfield Business Partners.
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For the two AP1000 projects, Westinghouse and the Shaw Group, which owned S&W, set up 
an EPC consortium and agreed with the utility owners on a “guaranteed substantial completion 
date”,24 with damage provisions in case of delays. Westinghouse was primarily responsible for 
the design, manufacture, and procurement of the nuclear steam supply system, while S&W was 
to tackle on-site construction and procurement of auxiliary equipment. 

As explained in the previous section, these two projects were FOAK implementations of a new 
modular construction approach using off-site construction and large prefabricated modules 
manufactured at (and shipped from) a facility operated by Shaw-Chicago Bridge and Iron (CB&I), 
S&W’s parent company. This facility, which had mainly serviced the regional petrochemical 
industry, found it challenging to adapt to nuclear-grade construction standards. There were also 
issues with reactor site constructability due to lack of design maturity, particularly concerning 
integration and the on-site assembly of prefabricated modules. In addition, changes in US Nuclear 
Regulatory Commission (NRC) regulations led to further design modifications during construction. 

These technical difficulties were exacerbated by contractual challenges, both within the 
consortium and between the consortium and the owner utilities: 

• Contractual challenges within the EPC consortium: The series of technical difficulties 
affected the working relationship between the designer authority, Westinghouse, and the 
builder, S&W. In turn, instead of mobilising resources to resolve these unanticipated issues, 
both parties revolved to commercial disputes.25 This situation was further amplified by 
fixed-price contracts aimed at shifting construction risks to the subcontractors. 

To address this form of hold-up problem, some significant changes in EPC project 
management took place in 2016, with this role being transferred to one sole experienced EPC 
company. In parallel, Westinghouse decided to acquire the nuclear business of CB&I, including 
S&W. This form of vertical integration allowed Westinghouse to become the sole construction 
contractor, thereby resolving the commercial dispute with CB&I over delays at the two AP1000 
projects. 

This illustrates the importance of avoiding fixed-price contracts for risky parts of projects: 
due to transaction costs, contracts remain incomplete, which increases the risk of litigation in 
cases of technical difficulty. At the same time, vertical integration and the selection of a single 
experienced EPC contractor were found to strengthen project management and effectively 
reduce transaction costs.  

• Contractual challenges between the consortium and owner utilities: The initial 
contractual framework between the owner utilities and the AP1000 project consortium 
at both Vogtle and VC Summer has also been identified as a factor amplifying the 
construction difficulties of these two projects. Both projects were signed under fixed-
cost contracts, which shifted most of the construction risks to the EPC consortium.  

The Huston expert review (2016) argued that this could have counterproductive 
consequences in the case of a nuclear project, with more incentives to focus on cost management 
than on quality. In addition, the multiplication of design changes (due partly to regulatory 
changes and therefore the responsibility of the owner utilities) led to further commercial 
litigation over responsibility for the projects delays and associated cost overruns. As argued by 
Bechtel (2016), in the case of VC Summer this led to a situation in which the contractual 
framework was no longer aligned with the project goals. To a large extent, this can also be 
considered another layer of hold-up problem due to transaction costs and incomplete contracts.  

 
24. www.powermag.com/how-westinghouse-symbol-of-u-s-nuclear-power-collapsed/?printmode=1. 

25. For instance, as the Huston expert report (2016) documents, at the Vogtle project, CB&I refused to 
incorporate a number of Westinghouse design modifications into module fabrication. The internal 
consortium dispute hence had a direct impact on the project’s timeline. According to the Bechtel report 
(2016), a similar situation occurred at the VC Summer project and reduced onsite worker productivity. 
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Conversely, the new EPC contract signed in 2017 between Georgia Power and Bechtel to 
manage completion of the Vogtle project is not based on a fixed-price contracting framework 
and instead includes specific incentive payments for on-time, on-cost completion.26 

 Lessons from the Flamanville 3 and Olkiluoto 3 projects 

• Contractual challenges between the consortium and the owner utility: The Finnish EPR 
project shared some similarities with the US AP1000 projects in terms of contracting 
framework, with the use of fixed-term contracts producing similar lessons.  

In 2003, an Areva-Siemens consortium signed a EUR 3-billion fixed-price turnkey contract 
with the Finnish utility Teollisuuden Voima Oyj (TVO) for construction of the first EPR at 
Olkiluoto. Low design and supply chain maturity caused design changes that resulted in delays 
and a rapid escalation of construction costs. This led to a series of commercial disputes and 
litigations, with both sides claiming compensation for the cost overruns and associated extra 
delay costs (STUK, 2016). In 2008, Areva claimed compensation of about EUR 1 billion for TVO’s 
alleged failures, and TVO, in a January 2009 counterclaim, demanded EUR 2.4 billion in 
compensation from Areva for project delays. This legal dispute lasted for several years until a 
final arbitration in 2018 in which TVO was awarded a EUR 450 million settlement.27  

This settlement also included some changes in the contractual framework with incentive 
payments. The supplier consortium would be entitled to receive an incentive payment of up to 
EUR 150 million in the case of project completion according to a new agreed timeline (end-2019). 
Otherwise, the consortium would be expected to pay a penalty to TVO for such delays, 
proportional to the actual time of completion of the OL3 EPR project and up to a maximum of 
EUR 400 million. 

• Incentivisation of lead contractors: In the case of the French EPR project, EDF acted as 
owner and architect-engineer, contracting directly with suppliers through a multi-
package approach. In this respect, this project did not face the difficulties associated with 
fixed-price turnkey contracts used in other FOAK projects, but this does not mean that 
EDF avoided all contractual framework challenges. Compared with its previous projects, 
the EDF aimed to reduce the number of first-rank contractors and limit the complexity 
of interface management while incentivising suppliers to be responsible for their scopes. 
In the end, however, most of the risks were still borne by EDF, which was required to be 
much more involved in contract management than anticipated.  

Project planning and scheduling 

Project planning and scheduling are especially important, as early decisions in these fields have 
a long-lasting impact on the project. The ability to influence the success of a project is gradually 
reduced after the planning phase while accumulated capital expenditures increase, especially 
after the start of construction.  

While this trend applies to any large-scale engineering project, its impact on new nuclear 
construction is probably unique. Project complexity and high regulatory oversight further limit 
opportunities to review and alter some areas of planning once construction has started without 
significantly affecting the rest of the project. 

To a large extent, project planning and scheduling hurdles are similar to, and strongly 
linked with, the design and supply chain maturity challenges highlighted in Section 3.1. For 
example, including the supply chain early in project planning and in detailed design studies will 
both help to ensure constructability and tackle equipment qualification issues. Similarly, the 
optimism bias that impacts costs estimates when design maturity is low (see Box 5) also affects 
project planning and scheduling. Recent FOAK projects have been characterised by notoriously 
unrealistic initial planning and scheduling, which has amplified the impact of design changes 
during construction. 

 
26. www.enr.com/articles/42734-how-bechtel-limits-risk-on-possible-big-plant-vogtle-role. 

27. www.nucnet.org/news/tvo-says-450-million-settlement-with-olkiluoto-3-suppliers-has-come-into-force. 
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Finally, it is worth stressing that while successful project planning and scheduling is in large 
part a matter of organisational choice and resources, the availability of innovative methods and 
especially a system engineering approach are also important factors. These will be presented in 
detail in Section 4.2. as part of short-term cost reduction opportunities. 

 

Box 8: The opportunities and challenges of localisation strategies:  
Insights from the Akkuyu project 

When a nuclear power plant is exported, a localisation strategy in the supply chain externalises 
some of the activities of the construction of a nuclear power plant to the local industry. 

Construction of the first nuclear power plant in a country will generally require a turnkey contract 
with an experienced international vendor, at least for the nuclear island (IAEA, 2011). As local 
industry experience develops, the local content of subsequent new builds also tends to increase. If 
the size of the national programme is sufficiently large, host countries may have a strong interest 
in participating in activities with higher value in the supply chain, such as manufacturing, 
engineering and design. In this case, localisation strategies are usually accompanied by technology 
transfer agreements. This is the model supporting successful indigenous nuclear industrial plans 
in France, Japan, Korea and, more recently, China. 

A localisation plan may provide different type of benefits depending on the stakeholder. From the 
consumer (host country) perspective, greater localisation offers opportunities for economic growth 
and employment in the region. It may also raise the productivity of local industries and foster long-
term business relationships with leading global companies. Building in-house capabilities also 
makes economic sense, especially for large nuclear programmes.  

Figure 23: Progress on local content of different Chinese CPR-1000 reactor 

 
                                    Source: NEA (2015), Nuclear New Build: Insights into Financing  
                                       and Project Management. 

For the technology vendor, localisation also provides diverse opportunities. First, it reduces 
political risks and opposition by strengthening relationships with the government and local 
communities. Secondly, CAPEX savings can be realised thanks to less costly local procurement, 
lower transport costs and keener competition. 

Nevertheless, technology vendors also face several additional risks with localisation. The local 
industry may be less productive and may lack the necessary capabilities and skills, putting the 
project’s budget and schedule at risk. The qualifications of local suppliers to manufacture nuclear-
grade components should be properly investigated and monitored. Risks related to currency 
exchange rates should also not be neglected. Furthermore, the number of project interfaces 
increases with greater organisational complexity, raising transaction costs. The cultural 
differences between vendors and host countries may also add to soft costs (see Box 6). 
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Box 8: The opportunities and challenges of localisation strategies:  
Insights from the Akkuyu project (cont’d) 

To mitigate these potential risks, vendors may adjust and refine their localisation approaches. 
Among the best practices, assessing the capabilities of local suppliers and setting up qualification 
and oversight processes are of high importance (WNA, 2019). The Akkuyu project provides 
interesting insights on the opportunities and potential of localisation strategies. 

The Akkuyu project 

The Akkuyu project involves the construction of four VVER-1200s (4 800 MWe total capacity) in 
Turkey, following the signature of an intergovernmental agreement (IGA) with Russia in May 2010. 
The Akkuyu project is the first nuclear power plant ever built in Turkey and the first new-build 
project based on the build-own-operate (BOO) contractual model.28 According to the IGA, Russia 
(with Rosatom at the head of the project) is responsible for the planning, construction, operations, 
maintenance of the plant as well as its decommissioning and waste management. This scope also 
includes the project financing, estimated at USD 20 billion (NEA, 2015).  

One of the key aspects of the project is the necessity to raise significant funding, particularly export 
credit agency (ECA) funding. Estimates from 2015 indicated potential ECA needs of USD 1.6 billion 
(NEA, 2015). Rosatom’s strategy involves adjusting the contracting approach through a split-
package and multi-package mix to maximise localisation opportunities and, consequently, the 
chances of attracting ECA funding. 

The selected localisation process requires elaboration of a detailed plan of localisation resources 
and their division (i.e. internalisation versus externalisation) in collaboration with a key local 
experienced partner. More specifically, for the resources of the Akkuyu project (i.e. equipment, 
materials, workforce and machines), around 7 500 items have been identified for monitoring their 
prices in Turkey in detail. 

At the same time, an audit of the capabilities of potential manufacturers and suppliers is being 
performed with the involvement of key partners, certification authorities and duly accredited 
testing laboratories. The outcomes of the audit are used to define the final resource division plan. 
For the Akkuyu project, most of the materials and components not subject to special safety 
requirements (i.e. low or no safety-class components) are being procured in Turkey and other 
countries, whereas safety-class components and other steel structures are generally manufactured 
in and delivered from Russia. 

In addition, the audit may help identify key local suppliers and potential qualification needs. The 
qualification of a new supplier remains a challenge. In some cases, the local industry may be 
reticent to accept the high level of qualification and standards that nuclear manufacturing 
processes require, especially in the absence of subsequent projects. To accelerate the localisation 
process, it is advisable to identify a local party able to guide and assist the various partners through 
the qualification process. 

Alternatively, one of the solutions adopted for the Akkuyu project involves the publication of 
standards similar to Russia’s in the Turkish standardisation system; these standards are then 
included in the project’s licensing database. Open dialogue and communication with the local 
business community is also an effective tool to expand the pool of potential suppliers and their 
optimisation. 
 

 

 
28.  The BOO model is similar to the turnkey contract, except that there is a major difference in ownership. 

Consequently, a foreign investor has to plan, construct, operate and provide financing for the NPP. 
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3.3 Stability and predictability of the regulatory framework 

A number of factors related to the regulatory framework can impact nuclear construction costs. 
First, the level of safety requirements can be a cost driver. Gen-III nuclear reactor developments 
since the Three Mile Island (TMI) and Chernobyl nuclear accidents have resulted in enhanced 
safety standards that have affected design and supply chain requirements, often resulting in 
cost increases. Examples include the double-containment wall and the core catcher used in 
several Gen-III designs as well as an increased number of redundancy systems. 

In many instances, however, historical and recent construction experiences highlight that 
a key factor in constructions costs – and in costs overruns especially – is not the level of safety 
requirements per se, but rather their stability and predictability. 

3.3.1 Stability of the regulatory framework 

Having a stable regulatory framework does not mean that safety standards do not evolve to 
reflect lessons learnt, scientific progress, and overall revaluations of safety objectives. Rather, it 
is crucial to anticipate those modifications to the safety framework prior to the beginning of a 
new nuclear construction project, as they can have significant cost and delay implications.  

Lessons from historical projects in the United States 

A key driver of cost overruns in the United States has been changes during construction, 
typically imposed by the regulatory body as regulators progressively learn more about the safety 
of nuclear facilities, and about the best practices in reactor construction with regards to safety.  

In general, changes after construction has been initiated are very damaging to the cost of 
facilities (Ganda et al., 2016), primarily because the original contracts, negotiated through 
competitive bidding, become untenable when changes to the original scope of work are 
requested. Typically, rebidding at that point is also impractical, so that historically the original 
fixed-price contracts were switched to cost-plus contracts, impacting contractors’ incentives to 
complete the work efficiently and within a set budget. 

Additionally, several other drivers of historical cost escalations are related to reworkings: 

• The completed work has to be removed/altered, often with ripple effects on nearby 
systems. 

• The construction sequence has to be altered and so do equipment delivery schedules, 
potentially leaving groups of workers idle and leading to lower labour productivity. 

• The increased construction duration can create a positive feedback loop by exposing the 
project to greater risk of regulatory turbulence, raising interest costs and disrupting 
construction logistics. 

A similar conclusion was reached by a United Engineers and Contractors’ analysis for the 
US Department of Energy (DOE), discussed in ORNL (1988). In fact, “[cost overruns were] due 
more to decreased productivity than to increased amounts of material and equipment being 
installed.” Nuclear construction productivity has two components (ORNL, 1988): 

• Within workers’ control: “related to their competence, thoroughness, organisation and 
incentive to do quality work.” 

• Outside workers’ control: “related to rework [emphasis added] (design changes, 
interferences, inadequate lead times) and delays (extended schedules, quality assurance 
hold points, inspections).” 

ORNL (1988) found that the second component, related to reworking and delays, was the 
dominant cause of labour cost escalation between 1978 and 1988: “It is the second component 
that appears to predominate in the causes for decreased productivity.” 

As an example, Basset (1978) studied the cost overruns of the Davis-Besse power station in 
Ohio and found that the cost escalation (from the original budget of USD 136 million in 1967 at the 
approval of construction, to USD 650 million in 1977 at the end) was primarily linked with “NRC 
modifications and their chain effects”, accounting for USD 398 million of the total USD 650 million. 
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Lessons from the recent AP1000 project in the United States 

Since the early 2000s, the NRC has taken many steps to make the regulatory framework for 
nuclear new-builds more stable, including streamlining licensing by implementing combined 
licence applications (COLAs) that cover both construction and operations for new reactors.  

However, in the case of Vogtle 3 & 4, the COLA licence affected the AP1000 generic design 
licence. A new standard was introduced in 2009 for shield building requirements, seven years 
after Westinghouse had applied for approval of its AP1000 design.29 The new requirements 
resulted in unanticipated engineering challenges at a late stage of project planning, and were 
only met by the company in 2011, contributing to both delays and costs overruns.  

Lessons from historical projects in France  

Analysing the construction costs of the French nuclear programme produces similar conclusions. 
Average costs as well as the variability of the French construction programme were substantially 
lower than for the United States. This performance can be attributed primarily to the lack of 
changes during construction, as well as to “rigorous quality and cost control by EDF” (Grubler, 
2010). The lack of changes during construction was partly a result of deliberate efforts to preserve 
engineering stability and partly owing to a regulatory environment that avoided imposing 
changes during construction.  

In addition, Rangel and Lévêque (2012) notes that despite the stability of safety rules, EDF 
integrated progressively more stringent safety features into new reactors.  

Lessons from APR1400 projects in Korea 

The APR1400 received standard design approval in May 2002, within five months of completion 
of its design development.  

First, from the basic design stage of the APR1400, the Nuclear Regulatory Agency developed 
the regulatory requirements and guidelines to be applied to the APR1400 by examining those 
applicable to existing nuclear power plants, as well as past operational experience. The Agency 
also evaluated new safety systems, ergonomic considerations and the reliability of critical 
systems and devices. It adopted a preliminary approval review system to facilitate co-operation 
between design development and regulatory evaluation and discussed major safety issues with 
designers (Oh and Park, 2004). 

Next, the Agency introduced a system to approve standardisation of the APR1400 design. 
After reviewing the US case and gathering a wide range of opinions on the necessity and 
direction of the system, the Agency established a standard design approval procedure adapted 
to the domestic situation. In this case, KEPCO signed an agreement for the preliminary safety 
review of the APR1400 with the Agency in 1999. It was agreed that the preliminary review results 
would be reflected in the subsequent official licensing process. In the preliminary review 
process, the utility answered roughly 2 100 questions raised by the Agency (Choi et al., 2001).  

As a result of these efforts, the bill to introduce the system for licensing standard design 
was enacted in 2001 under the Atomic Energy Act and related sub-regulations. Standard design 
approval is intended to improve the efficiency of regulations by applying a simplified licensing 
procedure to allow repetitive construction through a single design review of the standard design 
part. Designs with standard design approval were given a ten-year legal validity period.  

In July 2001, KHNP applied for standard design approval with a standard design safety 
analysis report, standard design description, performance verification plan for design and 
construction, and emergency operations procedure. The Agency focused its review on man-
machine interfaces related to main control room design, new safety injection system 
performance, and countermeasures against severe accidents. APR1400 standard design 
approval was granted in May 2002 (Oh and Park, 2004), and the utility received a construction 
permit for the first APR1400 in 2008.  

 
29. www.reuters.com/article/us-toshiba-accounting-westinghouse-nucle-idUSKBN17Y0CQ. 
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3.3.2 Predictability of the regulatory framework 

Predictability of when new standards or rules will be introduced is also critical, especially 
because the new regulations may not be directly translated into the detailed technical 
requirements needed to inform engineering studies. 

Lessons from the EPR project in France  

The implementation of a new regulation for nuclear pressurised equipment in France, and its 
impact on the Flamanville 3 project, illustrates the importance of this issue. In 2005 the 
regulation introduced new requirements concerning qualification, resistance to hazards, 
material properties and welding procedures, as well as quality control, quality assurance, and 
surveillance by third parties. It then took 4 years for the licensee and the safety authority to 
reach a common understanding on interpreting these new technical requirements. The 
requirements were further updated in 2012, and the regulation itself was further revised in 2015.  

All of this happened at the same time as large components were being manufactured for 
the Flamanville EPR, requiring the industry and certification bodies to interpret and agree upon 
the evolving requirements. 

The issues involved in qualification of the Flamanville pressure-vessel head illustrate how 
this lack of predictability – and to some extent stability – of safety regulations, combined with 
challenges in supply chain capabilities, can lead to delays and therefore contribute to costs 
overruns:  

• Although the reactor’s pressure head was forged in 2006, prior to the new regulation on 
pressure equipment, Framatome had agreed to comply with the imminent regulation.  

• However, as one of the largest forged nuclear components, it proved especially 
challenging for the industry and the safety authority to reach a common understanding 
for the qualification process. Initial discussions were completed only in 2011. 

• Further tests were then requested, which resulted in identification of non-compliance 
with the new specifications in 2014.  

• This led to a large-scale programme that lasted until 2017 to further demonstrate the 
safety case, despite the identified non-compliance.  

• Eventually, in October 2017, the French safety authority qualified this component for a 
reduced period until 2024. 

3.4 Policy framework and the mobilisation of stakeholders in a new-build programme  

Successful nuclear projects require strong and consistent political leadership to offer sufficient 
visibility and certainty to mobilise the different stakeholders, particularly in the supply chain. 
The development of a nuclear new-build project as part of a long-term programme can be a 
strong driver of cost reductions, as it limits nonrecurrent costs among units and supports the 
series effect. 

3.4.1 The role of political leadership in spearheading nuclear new-build projects 

Historical lessons from France’s nuclear programme 

Historically, the success of France’s nuclear programme depended on a government-led plan 
and the country’s goal to build power generation infrastructure that would support economic 
growth, ensure energy independence, and quickly achieve technological self-reliance. Having 
clear visibility over the size of the programme (initially 13 reactors) allowed the industry to 
organise itself under the strong industrial leadership entrusted to the state-owned electric 
utility by the government, and more generally by the community.  
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This context enabled the mobilisation of capabilities from other industries, including by 
means of conversions from declining sectors such as coal mining and steel and aluminium 
production. It also made it possible to optimise the standardisation effect across the largest fleet 
ever built and operated by a single utility. The difficulties encountered at the time were mainly 
related to the high pace of implementation30 and the pressure on domestic industrial capabilities, 
as well as on financial markets. The rhythm slowed as the initial forecast of 100 GWe of nuclear 
by 2000 was adjusted to meet demand and 63 GWe were eventually put into operation. 

Lessons from the Flamanville and Taishan EPRs 

In the early 2000s, however, several of the elements of France’s nuclear programme had 
disappeared, making it a challenge to build the first French EPR at Flamanville (Folz, 2019).  

Although the government authorised the Flamanville EPR as a demonstration project aimed 
at validating the design and renewing industrial capabilities for a potential future renewal of 
the fleet, the industry was not given the programme visibility it had received 30 years earlier. 
Instead, the Flamanville EPR was built within the context of political and media focus on 
renewables development, as well as on public debates about lifetime extensions of the existing 
fleet and reducing the share of nuclear in France’s electricity mix.  

Financial and human investments were inadequate to overcome the project’s challenges, 
as the sense of project ownership and its long-term vision for the community were left to the 
operator, EDF. At the same time, EDF involvement in the community had shifted. It no longer 
had its historical function as a fully state-owned company in charge of the electricity monopoly 
following an initial public offering (IPO) in 2005 and initiation of electricity market liberalisation 
in the early 2000s. 

In this context, EDF and its supply chain were under pressure to legitimate their project and 
nuclear new-builds more generally by proving their ability to achieve the announced targets. 
Extreme scrutiny was emphasised by increasing political, financial and media attention to 
short-term concerns. As a result, too much focus was placed on technical difficulties 
encountered in project execution and their impact on the budget, the schedule and the forecast 
commercial operations date (COD), at the expense of a shared vision of the project’s 
contribution to long-term energy policy.  

A similar project in a different context – Taishan, China – demonstrates that focusing 
instead on successive milestones, keeping a clear perspective of the project’s aims, and relying 
on the dynamics of a programme, create the best conditions to optimise the performance of an 
infrastructure project, especially in a FOAK context. 

Lessons from Korea’s nuclear programme 

Since Korea’s first long-term nuclear power development plan was established in 1968, 
government policy has consistently affected all nuclear power development businesses and 
processes, from the technology transfer of foreign designs and localising with the OPR1000, to 
further advancement with the APR1400. This government policy provided not only a domestic 
market but also supported the development of Korea’s indigenous technological capabilities for 
key nuclear power programme functions, including design, manufacturing, construction, and 
operations and maintenance. Hence, the Korean government has directly invested in 
technological learning and regulated domestic market conditions throughout the course of 
nuclear power plant development. It has actively played a pivotal in Korea’s nuclear power 
programmes, especially in terms of promoting synergistic interactions between technology 
development and market demand. 

In the early 1980s, the government formulated strategic plans for technical self-reliance on 
nuclear power plants. As oil crises swept the globe in the 1970s, the Korean government devised 
policies to foster energy independence – like France and other energy-poor countries – and 
decided to expand national nuclear power generation capacity.  

 
30. As many as 8 units were commissioned in one year (1981), with a total of 54 units in 15 years. 
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In 1984, the government established a Technical Self-Reliance Plan targeted at localising 
95% of Gen-II-type nuclear power plants by 1995, building up indigenous NPP technological 
capabilities and localising the design and manufacturing of NSSSs. A joint-design approach was 
adopted as a way of learning under the contract of international technology transfer. 

Development of the APR1400 design was also directed and supported by government policy 
as part of the country’s economic development strategy, which involved 11 projects aimed at 
helping Korea succeed in world-class technological innovation and competitiveness by the early 
2000s. The Korean government therefore strongly supported development of the APR1400 
design, placing it at the top of the national agenda.  

3.4.2 Benefits of multi-unit projects and series construction 

For countries considering the construction of several nuclear power plants, multi-unit and serial 
construction can significantly reduce construction costs. These reductions are achieved through 
well-identified levers (NEA, 2000; SFEN, 2018): 

• First, through the reduction of indirect construction costs. This includes design
documentation, safety approvals associated with the design, and supplier qualification.
For multi-unit projects on the same site, additional cost reductions are also possible, as
nonrecurrent site-specific regulatory, planning, and supporting infrastructure costs are
shared across several units.

• Second, through mobilisation of the nuclear supply chain as experience is transferred
among the various projects. This applies particularly to construction methods that can
be easily repeated once validated. Transferring experience also reduces construction
duration, which further cuts financial costs (interest during construction [IDC]).

Multi-unit effect 

Constructing several reactors of the same design on the same site reduces the nonrecurrent 
costs of infrastructure development per reactor. This includes site preparation (e.g. earthworks, 
road access) as well as some infrastructure (e.g. grid connections, water intake) and annex 
buildings that can be shared.  

In addition, a twin project facilitates more efficient allocation of resources that can be 
optimised between the two units, reducing the risks and impacts of delays. For instance, in the 
case of delays on one unit, teams can be reallocated to the other. Similarly, considering that 
there will be a lag of a few months between construction of the two units, if a spare part is 
needed for the first unit, it can be sourced from the second, thereby avoiding the risk of delays. 

Overall, it is estimated that constructing reactors in pairs reduces the cost of the second 
reactor by about 15% (NEA, 2000). An additional 5% cost reduction could also be expected for the 
second pair. 

The recent Barakah 4-unit project in the United Arab Emirates demonstrates that such cost 
reductions can be even more rapid for the most successful projects (Figure 24). This  project 
implemented construction and contracting best practices: an at-home multi-unit reference 
project, a proven supply chain, and strong overall project governance. According to Gogan 
(2019),31 costs fell more than 50% between the first and the fourth units. 

31. Building on data from the ETI Nuclear Cost Database.
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Figure 24: Average cost of one unit in a programme of n units 

 

Sources: Based on NEA (2000), Reduction of Capital Costs of Nuclear Power Plants; and Gogan (2019), “The 
potential for nuclear cost reduction.” 

Series effect 

Construction of the French fleet clearly benefitted from the series effect, with the average 
construction cost (EUR/kWe) of a series of standardised units being less than for a single unit 
with the same features designed and built separately. 

The series effect, a term covering all the effects related to delivering large projects, has been 
demonstrated in several econometric studies (Berthélemy and Escobar Rangel, 2015). To create 
a series effect, the technical standards, codes and norms that will be used in the design, 
licensing and construction of all units of the series must be stable. When there is any deviation 
from these conditions, for example with construction projects that involve more than one 
country (and are therefore subject to different safety authorities and regulations), or that have 
different industrial assembly lines, series effect benefits are likely to be lost. 

The series effect is influenced by two distinct factors: the programme effect and the 
productivity effect (SFEN, 2018). 

• The programme effect originates in the strategic decisions of the architect-engineer (the 
company managing the project and supervising reactor construction, for example EDF in 
France). The programme effect arises from the uniformity of studies, developments, 
qualifications and testing of materials for one reactor model built in a series. These 
nonrecurring costs are both independent of the number of units involved and are fairly 
independent of unit size (rated power). They are, however, strongly impacted by the level 
of innovation and degree of complexity introduced in a new design. 

• The productivity effect is seen mostly in the supply chain, with suppliers passing on 
gains in productivity in their prices. It is highly dependent on the visibility given to 
suppliers with a guaranteed order for a series of identical components. This visibility 
means that the planning and use of resources and production tools can be optimised.  

The impact of series construction of standardised reactors on OCC is quite substantial, with 
cost savings of 15-20% (NEA, 2000). The impact on time-related costs (IDC) is also significant 
(costs could decrease by more than 60%) because the construction period is substantially shorter. 
When time-related cost savings are combined with OCC reductions, total costs can be 25-40% 
lower.  
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Empirical evidence indicates that more than six units need to be built to take full advantage 
of a standardised series effect. Korean nuclear programme experience shows that the 
construction lead time of 75 months for the first twin units can fall to 53 months for the second 
pair. France’s 900-MWe series deployment demonstrates similar findings, with the last units 
being delivered in less than 60 months.  

 France’s historical nuclear programme: Benefits of series construction 

The French National Audit Office’s report provides a sound statistical baseline for the 
construction costs of France’s current fleet, expressed in nominal and real terms (using a gross 
domestic product deflator). The data show that the strategy of standardisation for the French 
fleet with a vertically integrated industrial organisation (with the operator, EDF, having 
architect-engineer responsibility) allowed EDF to realise significant cost reductions between the 
first and last pair of each reactor series (Figure 25). 

Figure 25: French nuclear programme construction costs, 2012 

 

Source: NEA based on data from Cour des Comptes (2012). 

 The UK Sizewell B and C projects: Benefits of shifting from a single- to multi-unit 
project 

Sizewell B was the first pressurised water reactor (PWR) to be built in the United Kingdom, and 
it was finished on time and on budget. The single-unit reactor was commissioned in 1995, and 
for several years a detailed plan for a twin-unit project based on the same reactor design was 
considered for Sizewell C.32  

It is estimated that the OCC would have fallen by 37% for the two projects, owing to both a 
reduction in indirect costs and sustained supply chain mobilisation. Sizewell C would have 
benefitted from the Sizewell B design phase’s primary contractors and suppliers, which would 
have significantly reduced costs related to the reactor core (the NSSS), construction and 
instrumentation, and software development.  

 
32. The current project for two EPRs at Sizewell C is based on the same site but is a different project in 

terms of reactor technology. 
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In addition, a number of nonrecurrent indirect costs related to reactor design, Generic 
Design Assessment (GDA) and site acquisition would have been avoided. Considering those 
nonrecurrent indirect costs, overall cost reductions could have reached 55% (Figure 26). 

Figure 26: Cost reductions expected between Sizewell B 
and proposed Sizewell C (1990s) 

Box 9: Lessons learnt from industrial megaprojects 

Nuclear new-builds are major temporary undertakings, characterised by colossal budgets, 
considerable complexity and important socio-political and economic implications. Nevertheless, 
they are not the only projects with these features. Major transportation projects such as tunnels, 
bridges, ports and other massive facilities such as oil and gas platforms, liquefied natural gas 
platforms and power stations have similar characteristics, and they all fall into the category of 
industrial megaprojects. 

The historical performance of megaprojects demonstrates that most of them have experienced 
cost and time overruns. For instance, transportation megaprojects are over budget all over the 
world (Locatelli, 2018). In the electricity sector, the costs of three-quarters of electricity 
megaprojects are higher than predicted, with an average budget overrun of 66% (Sovacool, Gilbert 
and Nugent, 2014). These trends suggest that nuclear projects are not unique and the poor 
performance of recent Gen-III FOAK projects can be explained, to some extent, by the fact that 
nuclear new-builds are among the most complex megaprojects. 

The reasons for megaproject cost overruns have been studied extensively, and three key factors 
can be identified: 

• Optimism bias: The combination of optimism bias and strategic misrepresentation is
responsible for the underestimation of cost baselines and the deliberate overestimation of
benefits to gain approval and funding. These factors are particularly important when political
and social implications are significant.

• Design maturity: When the scope of work and potential risks of megaprojects are well
identified in the pre-project phase, time and cost savings of roughly 20% can be realised.
Detailed engineering and early validation and verification are at the core of practices that can
make a difference (such as system engineering), as described in Chapter 4.
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Box 9: Lessons learnt from industrial megaprojects (cont’d) 

• Organisational complexity and inadequate governance: Recent studies suggest that
megaproject costs escalate mainly because investments are so large and projects are very
complex, particularly at the organisational level (Locatelli, 2018), involving numerous
stakeholders with conflicting needs and a high number and variety of interfaces between the
project and organisational entities. In these circumstances, a lack of strategic vision, ambiguity 
of scope and misalignment of stakeholder interests can be very damaging. It is therefore
largely the governance of all these interactions that will determine the final performance of
nuclear megaprojects.

Another challenge is low productivity. While the manufacturing sector has approximately doubled 
its productivity over the past two decades, construction productivity has remained flat or even 
declined. Wages, however, have continued to rise more quickly than inflation in many markets, 
resulting in higher costs for the same results (McKinsey, 2015). 

These findings suggest that the organisational dimension may be key to the success of 
megaprojects. Organisational theory offers practical solutions to find the organisational optimum 
needed to cope with the complexity and changing conditions of megaprojects (i.e. hierarchies 
versus networks). As indicated in Box 6, practitioners also highlight the importance of leadership, 
organisational skills, mindsets, attitudes, behaviour and organisational culture. These “soft” 
issues, which are often overlooked but represent a non-negligible source of additional costs, are 
further explored in Section 4.2.1. 
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4. Short-term opportunities to reduce nuclear construction costs 

The previous chapter identified lessons learnt from recent and historical nuclear construction 
projects. Without these lessons, nuclear cost reductions could hardly be achieved. The concept 
itself is straightforward but fundamental: take a mature and frozen design with a capable supply 
chain and replicate it as many times as possible in a stable and predictable regulatory 
framework. Under these conditions, nuclear construction costs should decrease steadily, as in 
the past. Recent projects have contributed to design maturity and to the rebuilding of lost supply 
chain capabilities. By simply committing to a nuclear programme and taking advantage of the 
core lessons learnt, many countries will not only activate cost reductions but trigger a new range 
of cost-saving opportunities that can be exploited by the industry in the short term (i.e. before 
2030) (see Figure 17).  

These opportunities are the result of continuous design (or product) and associated 
process 33  improvements, similar to other industries, and are possible only with serial 
construction. The complementarity of this new set of cost reduction drivers with the lessons 
identified in Chapter 3 is illustrated in Table 4. In fact, these drivers are not sequential and could 
also be mobilised in the early stages of development to accelerate nuclear learning while 
mitigating technical, organisational and regulatory risks. The evidence gathered in this chapter 
shows that countries in more advanced stages of learning are already benefitting from these 
opportunities, suggesting that nuclear costs and risks could be further reduced. In the next 
sections, the cost reduction potential of each of these drivers is analysed in detail. 

Table 4: Complementarity of cost reduction drivers at different learning stages 

Risk dimension Lessons learnt (core)  
(Chapter 3) 

Short-term cost reduction 
opportunities (Chapter 4) 

Technology Design maturity Design optimisation 

Organisational Effective project management Innovative technologies and processes 

Regulatory Stability and predictability of the regulatory framework Revised regulatory interactions 

 

4.1  Design optimisation of Gen-III reactors 

Learning by doing is not static. Learning rates differ among designs, depending on the 
efficiencies generated during their execution thanks to the optimisation that, for instance, takes 
requirements to improve delivery and constructability into account. Additional design 
optimisations may also maximise the power outputs of the existing design. This section covers 
four main design optimisation approaches: simplification; standardisation; reclassification of 
safety-related components; and power uprates.  

 
33. The distinction between products and processes is at the core of the different cost reduction strategies 

analysed in this part of the report. In fact, some of the drivers apply directly to the design, another 
subset to the processes, and others influence both at the same time. This approach facilitates the 
adequate assessment of cost reductions, particularly those associated with indirect costs or “support 
processes”, which have considerable potential. The interplay between a product and its delivery 
processes is further explored in Section 5.3. 
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It is important to remember that most of these design optimisation approaches can be 
considered when developing a new design from scratch; this section pays special attention to 
design optimisation opportunities that arise after the first-of-a-kind (FOAK) phase. In the post-
FOAK phase, designers may prioritise marginal modifications and seek the best compromise 
between simplification and design replication to preserve learning from previous constructions 
as much as possible. The attractiveness of major design optimisations tends to increase with 
the number of units to be built, allowing for amortisation of the engineering investment. 

4.1.1 Simplification 

Design simplification is not a new issue for nuclear technology. Combining larger cores with 
higher regulatory stringency rapidly produced a complex technical and organisational layering 
still found in most contemporary designs. Vendors and designers have been pursuing greater 
design simplification since the early 1980s to limit the negative spillovers of complexity and 
nuclear costs.  

Manno and Golay (1985) illustrate how design simplification is not a straightforward process, 
however. The main difficulty in developing a simplified design is to find a starting point, given 
the physical connections and interdependencies of plant systems. Vendors may adopt different 
methodologies, but all require sound engineering knowledge of the system and a comprehensive 
assessment of all possible impacts of design changes on the system’s overall architecture and on 
plant reliability. 

Some key lessons of past construction projects remain completely applicable today (NEA, 
2000). The main simplification guidelines include:  

• Streamlining overall plant architecture to reduce the number and volume of buildings 
while ensuring a compact, accessible layout. 

• Exploring the potential of reactor systems sharing infrastructure when possible. 

• Simplifying component, system and structure drawings, technical specifications and 
quality assurance requirements. 

• Rationalising civil works, reducing the quantity and complexity of rebar, piping and cable 
by using new technologies when available. 

• Reducing the number of system components when possible. 

Some Gen-III designs are the result of significant simplification efforts (Box 10). Nevertheless, 
these efforts did not yield the expected benefits, as they were largely offset by the absence of the 
conditions and learning described in Chapter 3. 

In addition, new opportunities arise from the adoption of product-oriented design processes 
commonly used in other industries. This is the case, for instance, with value engineering.  

Value engineering aims to maximise the value of a product or service by meeting customer 
expectations at the lowest possible cost. When applied to nuclear designs, this approach 
assesses the functionalities of each component and systematically compares their costs with 
stakeholder expectations in terms of safety and performance requirements, which could result 
in major design simplifications.34 At the same time, these principles help set priorities and 
refocus engineering efforts to reduce the risks of over-engineering35 already reported for recent 
Gen-III FOAK projects. Box 11 presents an example of application, using design-to-cost 
methodology. 

  

 
34.  Simply put, if the functionality of component A is already provided by component B and the overall 

system complies with all requirements, component A can be discarded. 

35.  Engineering efforts that do not add value to the project. 
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Box 10: Design simplification in large contemporary reactors 

AP1000 experience 

The AP1000 design developed by Westinghouse received design approval from the US Nuclear 
Regulatory Commission (NRC) using approximately 60% fewer valves, 75% less piping, 80% less 
control cable, 35% fewer pumps and 50% less seismic building volume than usual reactor designs 
(Sutharshan et al., 2011). It also took advantage of the design simplification associated with passive 
safety systems, which rely on a gravity-driven mechanism and natural circulation. They have one-
third of the remote valves needed in typical active systems and they contain no pumps. In most 
cases, these types of systems are also considered easier to inspect and maintain. 36  Equally 
important is the limited departure of passive systems from previous designs, which minimises the 
impact on neighbouring systems. 

In addition, the implementation of passive safety systems enables the reclassification of some 
active safety support systems. This simplification applies, for instance, to the emergency diesel 
generators and their network support systems, which are no longer safety-class and can benefit 
from lower standards and higher competition in the supply chain. In some cases, the systems can 
be eliminated completely.  

Another aspect reported by AP1000 designers is the higher degree of modularisation used in this 
design. The benefits and challenges of modularisation are explored in more detail in Section 4.2.2. 

Advanced boiling water reactor (ABWR) and economic simplified boiling water reactor (ESBWR) 
experience 

The ABWR developed by General Electric with Toshiba and Hitachi includes simplifications that 
have an impact on both the safety and overall economics of the plant. This design uses internal 
recirculation pumps that obviate the need for major piping found in earlier boiling water reactor 
designs. Build on ABWR experience, the ESBWR achieves greater simplicity by using natural 
circulation, leading to 25% fewer pumps and active drives than other designs relying on active 
safety systems. 
 

 

The benefits of design simplification and value engineering are evident in both direct and 
indirect engineering, procurement and construction (EPC) costs as a result of the lower quantity 
and number of components as well as streamlined design processes. Furthermore, project 
management and productivity savings may arise from the reduced complexity of simplified 
designs and the lower risk of reworking.  

It is important that any additional regulatory interactions required for design simplification 
not be neglected. As indicated in Chapter 2, licensing and certification are nonrecurring costs. 
If reproduced in subsequent constructions, they could hamper normal learning dynamics. 

  

 
36.  However, there may be challenges in periodic testing, as heat exchangers (HEs) tend to be larger. 

Furthermore, the cleaning of water-air HEs can also be problematic. 
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Box 11: Product-oriented approaches for post-FOAK design simplification:  
The EPR2 project and design-to-cost methodology 

The EPR2 project is an evolutionary EPR design co-developed by the EDF and Framatome. It is a 
joint effort to optimise and simplify the previous design, taking lessons learnt from recent EPR 
projects into account. 

Contrary to traditional processes that check cost acceptability once a design is completed, the 
design-to-cost approach sets a cost target at the early design stages (see Figure 27). The resulting 
design meets the cost objective while producing a final product of the highest value because value-
engineering techniques are used to question the technical choices at each stage and identify the 
configurations that meet stakeholder expectations at the given cost target. 

As a result, the new EPR2 has only three safety injection trains instead of four, a single containment 
with metallic liner, a reduced number of rooms, less rebar and materials, and fewer welds 
performed on-site. The French safety authority, following the recommendations from IRSN (2018), 
announced in July 2019 that the new design configuration meets current safety standards (ASN, 
2019). This example illustrates how safety requirements can be met at a lower cost using the 
appropriate design techniques. 

More importantly, this process also involves suppliers throughout all design phases to get 
immediate cost feedback and to verify that the solutions adopted are aligned with supply chain 
capabilities. Consequently, design-to-cost also provides an effective framework that enables 
collaboration as well as supply chain integration (Jorgensen, 2005). With the necessary 
adjustments, this methodology could also integrate some regulatory involvement in the future, 
which could lead to further cost savings (see Box 16). 
 

Figure 27: Traditional design vs. design-to-cost process 
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4.1.2  Standardisation 

Similar to other products and services in several industries, nuclear design could take advantage 
of standardisation to maintain design uniformity and homogenisation over several product 
iterations. Standardisation reduces the indirect costs associated with a new construction 
primarily by minimising recurring upfront design activities and enabling supply chain efficiency 
to foster series construction. Industrial code standardisation is addressed in more detail in 
Chapter 5. 

In practice, the full uniformity sought by standardisation encounters some physical 
constraints. Due to the specific conditions of every site, some adjustments to the standardised 
design may need to be implemented. Experience shows that these design modifications are 
limited to: 

• The foundations, as each site has specific conditions in terms of geology and seismicity. 

• The heat sink, depending on the cooling capabilities, environmental rules and water 
chemistry, and whether the cooling circuit is open or closed. 

• The power transmission network. 

• The local industrial environment. 

As indicated by the World Nuclear Association (WNA),  

the concept of standardised reactor designs does not require units to be completely 
identical. Rather all units that use the standardised design technology should at least 
share the same global architecture and the same specifications for the nuclear steam 
supply system design and components, and associated safety systems. (WNA, 2015)  

France’s case illustrates the economic benefits of defining a generic standard design that can be 
adapted to each site while keeping design modifications to a minimum (Roche, n.d.). Today, 
thanks to advances in seismic isolation, it could be possible to achieve higher levels of 
standardisation (see Section 4.2.2 for more information). 

Standardisation also requires strong industrial organisation. Supply chain interactions must 
be homogenised to speeds up transactions and increase manufacturing process productivity 
with the production of a greater number of identical components. Volume production, and the 
associated allotment process, also improves overall quality (i.e. specialisation leads to the rapid 
detection of flaws in the manufacturing processes and a skilled workforce), increases supply 
chain competition and enables long-term contracting. The latter provides visibility to suppliers 
so that they can mobilise their resources in more optimal conditions. 

Similarly, interactions with regulators (i.e. through the licensing process) are expedited and 
improved. Once a standard design has been licensed, it can be applied to all identical units (with 
adaptations to site-specific conditions), thus reducing time spent on regulatory activities 
compared with a diversified fleet (Ramana and Saikawa, 2011). In addition, design 
standardisation enables the accumulation of experience, which increases the probability that 
design flaws will be detected early, improving overall safety levels.  

Consequently, standardisation must be thought of as an industrial strategy involving the 
whole supply chain and regulators working together to ensure that the overall design, 
functionalities and interactions are maintained as much as possible, and that potential factors 
that could prevent this are minimised. Standardisation also has noteworthy advantages in 
terms of plant operations, but they are outside the scope of this report.  

Nevertheless, standardisation also has some drawbacks. The one most often cited is that a 
standardised fleet is more vulnerable to common problems (Ramana and Saikawa, 2011).37 This 
risk can, however, be minimised with the adoption and standardisation of a proven and mature 
technology. 

 
37. The French fleet already experienced this issue in 2016 when a carbon segregation problem was 

detected in the lower plates of the steam generators. Around 20 reactors were shut down to perform 
the necessary verifications, tests and maintenance work (Les Échos, 2016). 
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Another disadvantage of standardisation is its inability to foster nuclear design learning 
and experimentation, limiting the selection of superior design variants available that could, 
ultimately, also lead to lower costs.  

Despite these limitations, most authors agree that at some point in a nuclear programme, 
extensive standardisation will be desirable to reduce nuclear construction costs, especially 
indirect costs associated with recurring design activities. This is supported by empirical 
evidence from the French and Korean nuclear programmes, which effectively relied on 
standardisation to enhance nuclear learning (see Chapter 3).  

The key question is when standardisation should be undertaken (David and Rothwell, 1996). 
Timing will be determined by a country’s ability to commit to several nuclear constructions, 
depending on national demand. Those that do not have enough electricity demand to deploy a 
standardised programme may find it more convenient to take advantage of more developed 
foreign supply chains. However, as Chapter 5 explores in detail, the lack of international 
harmonisation is still a major hurdle preventing countries from benefitting from international 
standardisation processes.  

4.1.3 Reclassification of safety components  

The high level of scrutiny to which nuclear design processes are subjected may have some 
undesirable spillover effects during the definition of technical specifications. Higher safety 
classes than required according to existing safety rules might be assigned to some components 
simply because they are going to be part of a nuclear facility.  

The use of more refined risk-informed approaches during design stages may allow for better 
assessment of the boundary between nuclear and non-nuclear components. Reducing (or 
suppressing) the safety class in some systems enables the introduction of commercial off-the-
shelf (COTS) components, especially for lower safety classes. As a result, substantial savings can 
be realised in the absence of nuclear-grade labels thanks to a greater supplier availability and 
keener competition.  

Furthermore, using COTS components promotes higher levels of nuclear design 
simplification and standardisation, leading to additional cost cuts. Lastly, owing to 
manufacturers’ extensive experience in a variety of industries, COTS components may be more 
reliable. As an example, a cost reduction of 98% could be obtained for valves, depending on the 
valve quality standards (Figure 28). The impact of quality assurance standards on the cost of 
nuclear components is further assessed in Chapter 5. 

Figure 28: Cost gap between nuclear- and industrial-grade valves 

 

Source: EPRI (2012), Risk-Informed Strategies for the New Build Fleet: Risk-Informed Procurement and US NRC Rule 
10CFR50.69. 
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4.1.4 Power uprates 

A power uprate is an increment of the net electrical power of a nuclear power plant (NPP). It 
takes advantage of economies of scale to reduce the overnight cost of a given design. The 
nuclear industry has accumulated extensive experience in performing power uprates in existing 
reactors, an approach that can be effective during the post-FOAK phase of nuclear design. 

Higher power output can be achieved simply by employing enhanced techniques and 
sensors that reduce uncertainty in measurements of the flows necessary for calculating reactor 
power. More extensive power uprates may exploit the potential margins of current designs to 
accommodate higher outlet temperatures and steam flows, leading to higher power output. 
Achieving greater efficiency by minimising pressure drops on the secondary side and improved 
turbine blading could also be explored.  

Power uprates must be performed with caution, however, as they may entail significant 
safety demonstrations (nonrecurring costs) that could be detrimental to learning, especially for 
reactors already operating at high power levels.38 Developers also have to ensure that the size of 
the components and volumes remain unchanged so that established manufacturing processes 
are not altered, and they must keep commodity usage and civil work costs under control.  

4.2 Innovative technologies and processes 

Several innovations can be incorporated in the delivery processes of post-FOAK designs to 
accelerate their learning rates. Opportunities arise at several levels and include the introduction 
of new technologies as well as alternative organisational approaches and processes. The real 
value of these advances stems from their having already been proven in other industries, so 
that nuclear organisations could leverage this experience to reduce deployment time and 
potential risks. 

It is important to highlight that these innovations represent incremental improvements 
rather than disruptive or revolutionary changes. The objective, similar to design optimisation, 
is to preserve the learning effect from previous constructions as much as possible. 

Two domains deserve special attention when the adoption of innovative technologies and 
processes are being considered: organisation and management; and manufacturing and 
construction. (Opportunities and challenges associated with digital transformation are assessed 
separately in Box 12, as they are cross-cutting and have the potential to enhance multiple 
business processes at the same time.) 

4.2.1 Organisation and management 

As already highlighted several times in this report, the cost and risk issues affecting the nuclear 
industry today are not necessarily related to the technology itself, but rather to how the delivery 
infrastructure is being managed. NPPs remain one of the most complex capital projects, 
especially in organisational terms, as they involve numerous stakeholders, disciplines, systems 
and processes for which co-ordination and management can be difficult and time-consuming 
(Locatelli, 2018). Recent nuclear projects in western OECD countries provide evidence of these 
factors and how they have raised indirect costs in the last decade.  

Nevertheless, the ways organisational and managerial issues contribute to nuclear 
construction costs are often overlooked. Box 6 explains the existence of significant soft costs 
resulting from organisational dysfunctions that are usually not properly accounted for in initial 
estimates. Inefficient project organisation, a lack of skills and competencies, and poor-quality 
control are the most common sources of soft costs in nuclear projects. All recent projects in 
Europe and the United States have suffered the consequences of problems in these areas, even 
though various organisational and management modes exist to overcome these issues during 
the design and construction of new nuclear projects. These techniques originate from (and have 

 
38. High power levels tend to make safety demonstration more complex. 
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been successfully implemented in) the automotive and aviation manufacturing industries, 
which have levels of expertise and quality control similar to the nuclear industry. 

However, in most cases these new management modes are a substantial shift from the 
more traditional approaches and mindsets that have classically governed the nuclear industry. 
To increase the chances of success, they must be accompanied by robust change-management 
practices, a dedicated budget and top management support. 

 

Box 12: Digital transformation in the nuclear industry:  
Opportunities and challenges 

Recent advances in computer power and information systems have introduced numerous digital 
applications that incite organisations to rethink the way they create value. Digital transformation 
is the organisational process of using digital solutions to enhance the performance of existing 
business processes, 39  and its adoption in the nuclear industry, particularly for design and 
construction,40 could provide a range of benefits: 

• Increased productivity: As labour represents approximately 60% of total EPC costs, the higher 
degrees of automation, simplification and streamlining that can be achieved with digital tools 
may offer significant cost savings. 

• Detailed engineering: System engineering approaches can be digitally enabled to 
accommodate more simulations, analyses and verification in the early stages of design, thus 
reducing reworking risks.  

• Supply chain integration: Digital platforms shared among suppliers based on extended 
enterprise frameworks enable greater alignment and co-ordination of the supply chain. 

• Quick and well-informed decision-making: Digitalisation also allows for greater unification, 
synchronisation and traceability of information. Plus, information can be more easily 
retrieved, facilitating exchanges among stakeholders. 

• New operational modes: Digital tools provide the opportunity to explore processes 
characterised by higher collaboration, reactivity, agility41 and innovative thinking. 

Based on experience gained in other industries, including the energy sector and aircraft 
manufacturing, several solutions are already available for the design, procurement and 
construction process of nuclear systems. These solutions are at a high level of maturity, and the 
nuclear industry is currently in the deployment phase while developing the standards and rules 
necessary to make them robust and their effects long-lasting.  

Among the several digital tools being employed by nuclear vendors, product lifecycle management 
(PLM) systems are capturing most of the attention. A digital PLM platform enables the efficient 
management of data generated by a product (in this case an NPP) over its entire lifecycle. It provides 
a unified information system in which interaction with other applications and databases 
(i.e. document management systems, enterprise resource planning, etc.) is possible. With the 
appropriate access rights, the PLM platform can also be opened to external partners to increase 
supply chain integration. As a result, a PLM system acts as backbone, feeding all tools, activities and 
stakeholders involved in the lifecycle of an NPP with updated information. It codifies data exchanges 
and validation processes from systems to subsystems, and from design engineers to subcontractors 
throughout the entire lifecycle while assuring the accessibility and detailed traceability of all 
modifications and technical choices based on performance and regulatory requirements. The latter 
feature is particularly important in stringent and evolving regulatory frameworks. 
 

 
39. Generating new business and revenue streams is also possible with digital transformation. 
40. Adopting digital tools would also positively impact plant operations and decommissioning, but these 

aspects fall outside the scope of this report. 
41. Inherited from software companies, agile teams change protocols and silos by iterative and cross-

functional interactions. In changing environments, this methodology has proven very effective in 
delivering high-quality products. 
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Box 12: Digital transformation in the nuclear industry: 
Opportunities and challenges (cont’d) 

Other promising digital levers include building information management (BIM) systems, multi-
dimensional (multi-D) tools and digital twins. A BIM tool is equivalent to a PLM system, but deals 
with the physical and functional characteristics of an NPP’s various buildings and components. 
When used with a 3-D virtual environment, the digital mock-up provides a higher degree of 
integration and simulation capabilities (Figure 29). Most advanced versions couple the benefits of 
BIM with additional dimensions, such as a project’s cost and schedule, to become multi-D tools. 

Additional simulation capabilities can be used to optimise the installation sequences of critical 
components. Digital twins42 make it possible to continuously update existing BIM and multi-D 
models, narrowing the gap between “as-planned” and “as-built” information, thus facilitating the 
detection and correction of deviations, and enabling quick and well-informed on-site decision-
making. One interesting feature of digital twins is their potential to perform online resource 
planning, logistics and localisation. This facilitates the control of workforce densities43 and avoids 
unnecessary movements and material handling, which is particularly relevant for nuclear projects 
in which the peak workforce can reach more than 4 000 people.44 

Figure 29: 3-D virtual representation of the turbine hall with BIM tools 

   Source: Courtesy of EDF. 

Despite these opportunities, empirical evidence from other organisations shows that two-thirds of 
digital transformations fail. One of the reasons often cited by practitioners is the underestimation 
of organisational change. Like any other change management process, digital transformation may 
require strong leadership and a dedicated budget to absorb emergent risks and for employee 
training, communication and empowerment. 

Most importantly, digital transformation should not be limited to one company only. Change 
management, IT infrastructure and harmonisation efforts have to extend to the whole industrial 
ecosystem, and this may take considerable time. All these aspects must be fully acknowledged and 
embedded in the digital strategy to overcome digital maturity differences among partners. 

Finally, potential safety and security obstacles also need to be addressed in nuclear industry 
digitalisation. Regulator inertia and additional regulatory requirements (i.e. cybersecurity) are 
additional challenges the industry may face. 

42. Digital twins are virtual and dynamic representations of physical assets and processes. 

43. Number of workers within a unit working area.

44. A typical NPP construction project in Korea has 400 management staff and a workforce of 4 200 (Shin,
2018).
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Systems engineering (project organisation) 

The intricate architecture of nuclear designs, involving numerous systems and interfaces, 
makes managing projects particularly difficult. Systems engineering (SE) is a multidisciplinary 
approach to enable the successful delivery of systems and products in complex environments 
through comprehensive techniques and tools (Locatelli, Mancini and Romano, 2014). 

One of the pillars of SE is the “V model” (Figure 30). Applied recursively to each system and 
subsystem, this tool enables detailed front-end engineering and early verification and validation 
of the different components of the system. This increases the chances of getting the design right 
the first time and avoiding very expensive construction delays (Figure 30 illustrates potential 
cost and time gains that can be achieved with SE design efforts).  

One of the main outputs of the V model is an easily understandable reference system 
architecture that acts as a common language for all teams and stakeholders. If requirements 
evolve, this architecture also enables rapid impact analysis, smooth change management and 
rapid adaptation to complex environments. All these features and principles can be enhanced 
with digital tools and are currently at the core of most PLM systems (see Box 12). 

Figure 30: The SE “V model” and potential return on investment 

 

 

 
 

Knowledge management (skills and competences) 

Nuclear energy is a knowledge-intensive domain that requires high technical skill, competence 
and excellence levels, which take a long time to be acquired and properly adopted across the entire 
supply chain. Of capital importance is knowledge acquired in a tacit45 manner. Tacit knowledge is 
the result of experience, trial and error, human interactions and work practices. Most of the 
knowledge capital accumulated at the end of a project is tacit knowledge (Dudézert A. et al., 2012). 
The main issue with tacit knowledge is that it is “sticky” – i.e. inseparable from individuals and 
thus difficult to transfer. Consequently, once a project is finished, the learning tends to leak away 
as people move to other projects. Rising turnover rates of young professionals and uncertainty 
surrounding nuclear new-build orders in OECD countries aggravate this situation. 

 
45. As compared with explicit knowledge, which is well documented and codified in books, archives, 
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In this context, knowledge management (KM) is an emerging integrated, systematic 
approach to identify, manage and share an organisation’s knowledge and enable people to 
create new knowledge collectively, and thereby help achieve the organisation’s objectives (IAEA, 
2012). The nuclear industry is already familiar with traditional KM approaches46 but has been 
falling behind in embracing more bottom-up network-centric approaches that rely on 
communities of practice and digital platforms. These approaches consider knowledge as a 
resource that is built collectively and enriched through everyday interactions with peers, and 
they have proven to be an efficient way to sustain tacit knowledge, despite organisational 
turnover and activity downturns. 

Digital transformation (see Box 12) therefore offers a prime opportunity to introduce these 
new KM techniques into business processes to raise the overall performance of nuclear 
organisations. For instance, bottom-up KM processes can be embedded within a PLM platform 
to incorporate new knowledge and valuable lessons learnt in the field, from recent and ongoing 
projects. As a result, the PLM system would become a virtual environment capable of ensuring 
the continuity of data, information and knowledge throughout the supply chain, accelerating 
learning effects in the nuclear industry. Lastly, as for other transformative processes, the 
introduction of new KM techniques may require corporate culture shifts and other 
organisational changes that have to be properly managed. 

In spite of the potential of modern KM techniques, it must be underlined that the most 
effective way to create and sustain knowledge is to keep the same people doing the same 
activity for as long as possible (Mckinsey, 2018). Governments thus have a major responsibility 
to create favourable conditions by committing to a nuclear programme, which could be 
complemented by national-level strategic planning. To this end, government, industry and 
academics could work together to provide a functional framework for workforce development 
that includes attractive university programmes, rigorous professional training, research and 
development (R&D) investments, mobility, partnerships between utilities and universities, and 
international collaboration programmes. 

Operational excellence (quality control) 

If encountered once construction has begun, quality flaws could result in important delays and 
additional costs in terms of regulatory interactions, engineering efforts and reworking. As 
quality in execution is linked with skill and competence, it is important to underline that 
countries building several reactors will benefit from quality improvements and more effective 
quality management systems as supply chain capabilities develop. 

At the same time, it is possible to mobilise a set of tools, techniques and principles to foster 
operational excellence and strengthen the quality control system continuously with every new 
construction. This is the aim of lean management (LM). Popularised by the Japanese car 
manufacturer Toyota in 1980, LM is a management philosophy that pursues the continuous 
improvement of processes by eliminating sources of waste and tasks that do not add value. It 
relies on workforce engagement as the best ally to identify operational flaws and propose 
potential improvements. Its application to the nuclear industry could help identify and remove 
redundant quality checks and engineering efforts while reducing the risk and number of non-
quality issues at all levels: design, construction, component manufacturing and regulation. 

4.2.2 Construction and manufacturing 

In addition to organisational and managerial cost reduction opportunities, incremental 
innovations in construction and manufacturing could lead to additional cost savings in the 
short term. The most promising technologies and processes include advanced manufacturing; 
advanced concrete and rebar solutions; risk-informed inspection; improved seismic design; 
modularisation; and other advanced construction methods. These solutions essentially pursue 
greater labour productivity and more aggressive reductions in lead times and raw material 

 
46. Including knowledge-mapping (the identification of knowledge-holders and flows), expert interviews 

and mentoring (IAEA, 2012). Practices are quite formal and adhere to top-down logic. 
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usage. As the following sections illustrate, the large size of components is the main technical 
barrier in implementing some of these solutions. 

Advanced manufacturing  

The manufacturing process can be particularly expensive, especially for large, heavy safety-
related components such as the reactor pressure vessel (RPV). Particularly important is the thick 
section during the welding process. With traditional techniques based on tungsten inert gas 
(TIG) arc welding, around 100 runs are required for a 20-mm-thick section. Each run also 
requires heating, inter-pass temperature control and inter-stage non-destructive examination 
(NDE). As a result, the welding, inspection and completion of a RPV is an expensive and time-
consuming process that can take several months, and accounts for a large proportion of 
fabrication costs and component lead time (Nuclear Engineering International, 2019). 

Significant progress has been made in recent years in the development of manufacturing 
techniques and processes (joining, welding, machining, forming, etc.) in various industries, 
especially automotive and aerospace. Some of these techniques are electron beam welding, 
powder-metallurgy hot isostatic pressing, diode laser cladding and additive manufacturing (EY, 
2016; Nuclear AMRC, n.d.). The cost and lead-time reductions these solutions may offer are also 
remarkable. 

However, their large-scale application in the nuclear industry still needs additional 
development and the physical size of nuclear components does not facilitate their 
implementation. According to EY (2016), of 14 potential advanced manufacturing techniques, 
only 2 are applicable to large reactors and could be ready for production in 2022: rapid, large-
body and in-process metrology; and automated welding and rebar assembly. The latter has been 
successfully used to weld the reactor coolant pumps of the Korean APR-1400 design and in the 
Japanese ABWR Kashiwazaki-Kariwa 6&7 project (IAEA, 2004). 

Advanced concrete and rebar solutions  

Activities involving concrete and rebar are labour-intensive. In some cases, steel congestion can 
be a serious problem as it stunts constructability by limiting access, increasing workforce 
densities and thus undermining the overall productivity of civil works. Considerable rebar 
congestion may also result in particular defects in concrete such as voids. Some advanced 
concrete and rebar solutions include high-strength reinforcing steel (EPRI, 2016), ultra-high-
performance concrete and self-consolidating concrete (EPRI, 2019). The latter flows into place 
using gravity alone, reducing defects and labour requirements during placement. Its use in the 
nuclear industry has already been reported for AP1000 projects (MIT, 2018). 

Another technique that is being increasingly adopted for nuclear civil works is the use of 
steel-plate composites (SPCs), which consist of two parallel steel plates connected by ties. The 
additional mechanical strength provided by the plates allows for the replacement of rebar and 
also facilities concrete-pouring without temporary supports during fabrication, resulting in a 
50% reduction in installation time (MIT, 2018) (Figure 31). This technique has already been 
certified for nuclear applications in Japan, Korea (Lloyd, 2019) and the United States (MIT, 2018). 
For instance, it has been successfully implemented as a part of a global modularisation 
approach in the APR-1400 design (see Box 13). 

These different techniques can all be combined as a part of a comprehensive advanced 
construction approach involving modularisation and more advanced construction methods, as 
described later in this chapter. 

Risk-informed inspection 

Risk-informed approaches used to redefine safety boundaries and enable the adoption of COTS 
components can also be extended to inspection, particularly to NDE. NDE is mandatory to 
comply with nuclear industry licensing requirements. It may involve significant resources 
during the manufacturing of critical components, especially those associated with reactor plant 
equipment subject to stringent safety standards. Requirements are usually generated using 
deterministic design analyses that quantify the necessary safety factors. This may produce 
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conservative inspection schemes that do not always take the probability of damage occurrence 
into account. Risk-informed methods rely on probabilistic techniques that lead to a more 
efficient inspection regimen by identifying appropriate inspection locations and frequencies. 

Modelling and simulation techniques are also an effective way to enhance risk-informed 
NDE processes. New configurations and sensors can be tested, and optimised accordingly, to 
increase the probability of success. The extension of existing risk-information NDE approaches 
to other components can be accelerated using simulations to generate the required scientific-
based evidence for the regulatory bodies (EPRI, 2014). 

Improved seismic design 

Due to the lack of advanced models for dynamic load analysis during the 1970s-1980s, especially 
for seismic-related design activities, Gen-II reactor structural designs contained significantly 
conservative estimates. Current Gen-III designs, based on the legacy of the previous generation 
of reactors, may have inherited some of these conservative assumptions in their licensing 
approaches. More accurate estimates of the seismic response of current nuclear designs with 
more refined models may result in lower structural load requirements and thus major savings 
owing to downgrades in reinforcing-steel needs, concrete wall thickness, the number of 
structural steel connections, and anchorage between structural elements and components. 

In addition to increasing the accuracy of ground-motion estimates, technologies such as 
seismic isolation systems can be implemented to reduce the overall effect of a seismic-related 
event.47 As dependency on site-specific seismic conditions is significantly reduced, this type of 
technology enables greater design standardisation. Seismic isolation devices have already been 
successfully installed in the Cruas NPP, the ITER facility, the Jules Horowitz research reactor 
(France) and the Koeberg NPP (South Africa). In terms of cost, installing these devices is 
expensive. Investment attractiveness increases for ground acceleration peaks exceeding 0.2 g. 

Figure 31: Advantages of SPC vs. rebar-based structures, ABWR study 

 
Source: IAEA (2004), Construction and Commissioning Experience of Evolutionary Water Cooled 
Nuclear Power Plants. 

 
47. Seismic isolation systems consist of devices (elastomeric [rubber] bearings or low-friction sliders) that 

“isolate” a structure from the ground by absorbing shock for the buildings. Compared with a fixed-based 
structure, seismic isolation effectively dampens horizontal acceleration from an earthquake, although 
vertical displacements must still be considered. 
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Modularisation and other advanced construction methods 

Modularisation is the process of breaking a large and complicated product down into smaller 
building blocks, or modules, according to a set of limited constraints. The objective is to 
maximise the amount of work that can be transferred to a shop or factory, as this type of 
environment offers greater predictability and control, greatly improving overall productivity 
(and often quality) while making parallel construction possible. Constructability is also 
enhanced as the number of components, interfaces and workers (i.e. site congestion) is reduced.  

A more controlled environment could be also more convenient for critical processes such as 
concrete-pouring, welding, steel-cutting and testing. Modularisation has already provided 
benefits in other industries such as shipbuilding, aviation, chemical processing, and oil and gas. 
General observations of modularisation in the power sector indicate lead-time reductions of 
40% and 20% lower costs (Lloyd, 2019). 

Large stick-built Gen-III reactors already accommodate a certain amount of factory 
construction, approximately 30% of construction costs48 (EY, 2016). According to recent results 
from the University of Cambridge, for reactors with a power output greater than 750 megawatts 
of electrical capacity (MWe), this number could be increased up to 40% through modularisation 
(Lloyd, 2019). The nuclear industry has already accumulated some experience in implementing 
modularisation techniques for large reactors (Box 13), but evidence indicates that larger projects 
could be delivered faster with more extensive modularisation. However, if the supply chain’s 
ability to deal with the modules is limited, this could rapidly offset expected benefits.49 Also, 
additional upfront engineering efforts and funds are required to assess the feasibility of the 
different modules and secure their procurement before construction begins. 

As with advanced manufacturing techniques, component size, weight and geometry are the 
main physical constraints on modularisation. These parameters directly dictate how easily the 
various components can be transported, lifted and installed. The infrastructure to access the 
site and national transportation standards may present additional restrictions.  

Figure 32 illustrates a more granular analysis of the degree of modularisation of different 
types of components: as the size of the component tends to increase with power output, the 
degree of modularisation falls. While concrete and structural steel components cannot be easily 
modularised for all ranges of power, reinforcing steel, liner and, to some extent, mechanical 
components offer higher potential for modularisation. To counteract these constraints, 
designers may adopt more aggressive modularisation strategies, further subdividing modules 
to make them transportable.50 Furthermore, a net improvement in the degree of modularisation 
for reduced power outputs presents opportunities for factory-based construction for smaller 
reactor concepts. This is one of the main factors that makes small modular reactors (SMRs) and 
micro-reactors attractive, as Chapter 5 will discuss in more detail. 

Other advanced construction techniques include open-top construction; parallel 
construction; layout and crane optimisation; and all-weather conditions. These construction 
approaches and their associated benefits have been well documented in past in publications 
(NEA, 2000; IAEA, 2004 and 2011; EY, 2016), but they are still applicable and could produce 
additional savings for post-FOAK nuclear projects. 

The design phase is critical, because it is in this stage that all the construction techniques 
must be assessed and combined into an overarching construction plan to reduce construction 
risks and improve constructability. Digital solutions such as BIM and multi-D tools (see Box 12) 
enable higher degrees of testing and experimentation, and therefore a more optimal 
construction plan. Modularisation is a clear example of how construction techniques have to be 
incorporated into the design as soon as possible, with the early involvement of the supply chain. 

 
48. This essentially involves fabrication of the reactor and turbine plant components and control systems. 
49. This issue has been observed in the delivery of first AP1000 units. 
50. Lloyd et al. (2018) explore the relationship between the module division factor and the number of modules 

possible in an NPP design. While the S&W scheme results in 1 417 modules, when the dimension of the 
modules is halved the total rises to 6 324, potentially increasing the degree of modularisation. 
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Figure 32: Maximum degree of modularisation for different  
components attainable with S&W scheme 

 
Source: Lloyd, Roulstone and Middleton (2018), “The impact of modularisation strategies on Small 
Modular Reactors.”  

 

Box 13: Modularisation schemes for large reactors 

Modularisation efforts are not recent in the history of nuclear power. The Stone & Webster (S&W) 
modularisation scheme developed for a generic 950-MWe Westinghouse PWR in 1977 was supposed 
to be used in the Sundesert NPP in California. The project was halted and the S&W scheme was never 
implemented, but it certainly inspired subsequent modularisation efforts for the AP1000 design. 

The S&W scheme uses time and cost savings to determine final modules selection. Feasible 
modules must create cost savings of at least 5% (either on materials, labour or both). The strategy 
involves the use of on-site shops for the fabrication of modules, limiting the remaining constraints 
to heavy lifting only. Nevertheless, transportation is cited as one of the primary limitations. The 
S&W report identifies roughly 1 400 modules, most of them structural (approximately 1 300) and 
the remainder mechanical.  

More aggressive modularisation approaches show that is possible to design combined modules, 
incorporating structural elements with other components such as piping, cable trays or ducting. 
These types of modules are typically selected if the equipment layout in the given area is very 
compact. The density of bulk commodities inside combined modules is therefore a key parameter 
for its selection and design. Consequently, procurement may become an issue in combined 
modules as the build sequence is altered from that of conventional construction (Lloyd, 2019). 

AP1000 experience 

The AP1000 modularisation approach is the materialisation of efforts initiated with the S&W 
scheme. It consists of 160 structural and 56 mechanical modules that target essentially three areas: 
the containment building, the auxiliary building and the turbine building (Niemer, 2011). 

One of the main structural modules (known as CA-01) is a multi-compartment structure 
comprising the central walls of the containment’s internal structure. The vertical walls of the 
module house the refuelling cavity, the reactor vessel compartment, and the two steam generator 
compartments. The CA-01 consists of 40 prefabricated walls, or steel plates, call submodules. 
These submodules can be transported by rail to the site, and they weigh between 10 tonnes and 
73 tonnes; if barge access is available at the site, larger subassemblies can be envisaged. The 
various modules are assembled in an on-site shop, and the completed CA-01 is then lifted to its 
final location within the containment vessel with a very-heavy-lift crane (Sutharshan et al., 2011). 
After erection, concrete is finally poured between the steel plates. The level of standardisation of 
the modules or super-modules of the AP1000 is reportedly low (Lloyd, 2019). 
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Box 13: Modularisation schemes for large reactors (cont’d) 

ABWR experience 

Unit 7 of the ABWR Kashiwazaki-Kariwa project used the “large modularising construction 
method.” The seven floors of the ABWR building were divided into three levels and constructed in 
three steps in a preassembly yard before the pieces were successfully lifted and installed. The 
heaviest and most complicated module was the “upper drywell super large-scale module”. It was 
a combined module consisting of walls and support structures, pipes, valves, cable trays and air 
ducts weighting around 650 tonnes51 (IAEA, 2004). 

Hitachi-GE Nuclear Energy has made significant improvements in its modularisation strategy since 
the Kashiwazaki-Kariwa 6&7 project in the late 1990s. In 2009, 193 modules were used, compared 
with only 18 in 1985. These modules involve piping, platform equipment, cable trays and civil 
modules. Module weights vary between 5 tonnes and 650 tonnes and they are shipped using trucks, 
trailers or barges, depending on their weight, size and site location (Lloyd, 2019). The Hitachi-GE 
design and modularisation approach is 90% complete before construction starts, reducing the 
chance that reworking will be needed by about 20 times (Choi and Song, 2014) 

OPR-1000 and APR-1400 experience 

OPR-1000 Unit 2 at the Shin-Wolsong project provides insights into the modularisation of 
containment liner plates. The limiting factors of the liner modules are dimensions and 
constructability, not weight. The strategy that was retained combined smaller ring modules into a 
larger super-module before lifting it into place. As a result, the number of construction steps was 
reduced from 11 to 8 and the building schedule was shortened by 30 days. Furthermore, the total 
number of lifts was also reduced, allowing 54% of the welding jobs to be performed at ground level 
instead, improving both worker safety and weld quality (Lloyd, 2019). The APR-1400 design includes 
SPC structural modules and several combined modules. 

4.3 Revisiting regulatory interactions 

Regulation, alongside safety culture, is at the core of all nuclear activities. Its objective is not 
only to ensure that nuclear installations are safely operated and meet all standards, but also to 
create stakeholder and public confidence. An efficient, independent and transparent nuclear 
regulatory body is paramount to establish the social licence52 needed for nuclear power to have 
a stable and durable foundation in any society. 

The regulation of nuclear power involves several dimensions and stakeholders. First, given 
the complexity of nuclear systems, regulation is dominated by high levels of expertise. Second, 
to build and maintain a social licence, regulators must be able to interpret what society expects 
in terms of requirements imposed on licensees. How this interpretation is accomplished may 
vary from one country to another, depending on, among other elements, public attitude and 
regulatory practices. Conversely, the economic dimension of regulation is rarely discussed.  

The first economic impact of regulation, as indicated in Chapter 3, is on nuclear project 
costs in the absence of regulatory predictability and stability. While regulatory decisions may 
delay the initial design and construction schedule, delays are more detrimental once 
construction has begun. Longer lead times may trigger not only an IDC increase but productivity 

51. For comparison, the largest crane in the world (the SGC-250, also called “Big Carl”), developed by Sarens 
especially for the EPR Hinkley Point C project, has a maximum lifting capacity of 3 000 tonnes. 

52. The concept of social licence to operate (SLO) covers three key ideas: i) a SLO is granted by the local
community hosting a project; ii) it entails processes of acceptance and approval of industry activities;
and iii) it is constructed through dynamic interactions among the community, stakeholders and
companies (Lehtonen et al., 2020).
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downturns. Regulatory decisions may impose changes on the design that, again, would be 
particularly damaging in the construction phase. US experience provides empirical evidence of 
this type of impact: during the 1970s, especially after the Three Mile Island (TMI) accident, many 
regulatory-driven design changes affected both existing plants and those under construction. 
As suggested by Lovering, Yip and Nordhaus (2016), the NPPs that were under construction 
during the TMI accident and were eventually completed afterwards had higher median costs 
and durations compared with pre-TMI trends. 

Regulatory requirements may also impose base design changes, particularly for reactor 
designs that have already been licensed under the regulations of the country of origin but 
require design modifications to comply with the import country’s regulatory framework.53 The 
case study presented in Box 14 suggests that adaptation of a base design to a foreign regulatory 
regime might induce an EPC cost increase of around 30%. As will be explored in Chapter 5, the 
harmonisation of regulatory regimes may help limit the impact of adaptation costs. 

 

Box 14: Case study: Estimating the costs of adapting  
to national regulatory frameworks 

The lack of nuclear regulatory regime harmonisation implies that for nuclear designs to be 
exported, some modifications may be required for them to comply with the other county’s safety 
requirements. This case study offers a macro-level estimate of potential costs incurred to adapt a 
base design to a country-specific regulatory framework. The results were recognised by the 
REDCOST expert group. 

The four main potential sources of adaptation costs are: 

• An increase in the bill of quantities (BoQ) due to anticipated increases in the volumes of 
buildings. 

• An increase in the number of systems and equipment. 

• An increase in the number of work hours based on these modifications. 

• An increase in the number of work hours for licensing-related tasks. 

In line with the cost structure presented in Chapter 2, EPC expenses were assumed to be made up 
of 39% material costs and 61% labour costs. Another important assumption is that most of the 
adaptation costs induced by various regulatory requirements are captured by safety-related 
systems, components and structures such as the reactor plant and instrumentation and control 
(I&C) equipment, and construction works. The turbine and main heat rejection systems, however, 
were assumed to be outside the scope of adaptation costs.  

Using expert and engineering judgement, sets of multipliers were determined for the material and 
labour costs of each component; it was considered fair to assume a 30% increase in the BoQ and in 
the number of systems and equipment needed to meet more stringent safety requirements. This 
resulted in a general multiplier of 1.3 for the BoQ for construction works and concerned equipment. 

The correlation between the BoQ and construction work hours is almost linear, so a similar 
multiplier was used for work hours related to the various modifications. However, depending on 
the national licensing process, significant additional work might be needed for the licensing 
activities associated with safety-related components (i.e. reactor and electric plant equipment). 
This explains why different labour multipliers were used depending on component type, as well 
as the rise in indirect costs. The table below presents the cost breakdown and estimated multipliers 
of the selected safety-related components. 
 

 
53. Safety requirements may vary from one country to another in areas such as defence-in-depth concept; 

diversity and redundancy; and physical separation. These aspects are further investigated in Chapter 5. 
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Box 14: Case study: Estimating the costs of adapting 
to national regulatory frameworks (cont’d) 

Material costs rise from 39% to 44%, and labour costs from 61% to 86%, leading to an indicative 
cumulated cost increase of 30%. Based on this analysis and underlying assumptions, adapting a 
design to a different regulatory regime may raise EPC costs by around 30%. 

It is important to note that these estimates are subject to significant uncertainties. Adaptation 
costs may also vary depending on the design and the extent of the regulatory gap between 
countries. Nevertheless, this exercise confirms that adaptation costs are not negligible and 
potential cost savings could be obtained by strengthening regulatory harmonisation. 

From an economic perspective, the additional costs induced by regulatory activities are the 
price that must be paid to reduce the externalities associated with nuclear power, to ultimately 
maximise social benefits. Economic theory postulates that optimum nuclear power safety 
efforts are reached when the marginal social cost of protection equates the marginal social 
benefit in terms of potential harm avoided. Beyond this optimum, any additional regulatory 
effort is more costly than the potential benefits to the society. In practice, however, finding this 
optimal level is not a simple task. One of the main hurdles is the incompleteness of information. 
In fact, the marginal costs of regulatory efforts are not well known and uncertainties 
surrounding the marginal costs of risks avoided are high. 

Since establishment of the first regulatory bodies, rules and approaches for safety 
demonstration have not ceased to evolve. Various adjustments have been made to integrate 
increasing knowledge of the physical phenomena involved, as well as to improve regulatory 
efficiency and find a better balance between the costs and benefits of safety regulation. 
Traditional regulatory processes were characterised by high levels of prescription. This type of 
approach makes sense only when knowledge of nuclear safety is limited in order to reduce 
levels of uncertainty, ambiguity and misinterpretation (Sainati, Locatelli and Brookes, 2015). At 
the same time, safety demonstration relied heavily on deterministic approaches.54 

54. Build upon defence-in-depth principles (prevent, protect and mitigate), deterministic safety assessment 
postulates a series of incidents and accidents that may occur for a given design, and evaluates, by
means of codes and analytical methods, the capability of the design to withstand these transient
conditions. If the safety requirements are not satisfied, design modifications (e.g. the introduction of
additional safety systems) are implemented. It is the ability of defence-in-depth principles to meet
safety criteria – and not necessarily their effectiveness to reduce overall risks – that prompt design
modifications. 
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Civil structural works 5% 9% 1.3 1.4 6% 13%
Reactor plant equipment 11% 3% 1.3 2.2 14% 6%
Turbine plant equipment 8% 2% 8% 2%
Electric plant equipment 2% 2% 1.3 2.0 3% 3%
Main heat rejection system 2% 2% 2% 2%

Miscellaneous plant equipment 1% 2% 1% 2%

Indirect costs 11% 42% 1.4 11% 58%

Total 39% 61% 44% 86%

100% 130%
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With the emergence of probabilistic safety assessment (PSA), 55  the introduction risk-
informed, performance-based regulation (RIPBR) was facilitated. Instead of defining technical 
rules and then verifying their proper application, under RIPBR the regulator establishes basic 
requirements and sets overall performance goals, and the plant’s management then decides 
how to best meet the stated goals. Using risk metrics obtained through PSAs allows resources 
to be allocated to plant equipment and systems according to their safety relevancy. As a result, 
regulatory processes can be streamlined to remove unnecessary rules (as their contribution to 
safety is judged negligible) and focus efforts on critical stages and components. 

To reduce costs related to regulation, economic analysis suggests that RIPBR is more 
convenient for several reasons. As the choice of how to meet performance criteria is left to 
licensees, they have an economic incentive to select the least-costly solutions (Lévêque, 2014). 
Freedom of choice also implies greater innovation opportunities to further reduce costs and 
improve overall industry performance, and regulators also save the costs associated with 
gathering expert knowledge.  

However, the weakness of RIPBR is that it is difficult to measure performance itself, as 
performance can normally be observed only indirectly or during the operating period. Plus, PSA 
metrics are also subject to uncertainties, particularly those related to human factors and 
behaviours. Lastly, deterministic safety assessment is the only way to identify factors that may 
still be unknown and, under accident conditions, it provides the right tools to mitigate the most 
severe consequences. 

All these circumstances mean that, in practice, regulatory bodies adopt a more dual 
approach that combines the right level of prescription with goal-setting initiatives. Deterministic 
approaches are usually used for design-basis transient analysis, while probabilistic methods are 
more suited to beyond-design-basis assessment of accidents (i.e. external hazards, such as for 
the Fukushima Daiichi accident). The guiding principle of ALARA/P – as low as reasonably 
achievable/practicable – is widely accepted by all countries to ensure the proportionality and 
effectiveness of regulatory efforts in the interests of society. 

The ALARA/P principle is essentially based on the philosophy that operators and regulators 
should constantly be asking themselves, “How safe is safe enough?”. In the end, it is up to 
society to decide, on the basis that all the technical information is available. Regulators must 
therefore frame technical safety requirements in a way that reflects the expectations of society 
as a whole, considering the overall risks of nuclear activities. Consequently, in addition to 
potential interpretations of the ALARA/P concept, it is also important to understand the 
different strategies envisioned by regulators to translate the social perception of nuclear power 
into technical requirements and how this process may impact the cost of the technology.  

In practice, it is extremely difficult for a regulatory body to accurately assess the level of 
risk deemed acceptable by the society it represents. The public inquiries, parliamentary 
questions and media coverage that follow any untoward nuclear event may provide the most 
reliable indication (NEA, 2000). Regardless, regulators have to ensure that the ALARA/P 
principles are clearly understood and properly applied at all stages of the safety assessment. 
Some studies suggest that ALARA/P guidelines are often misinterpreted in regulatory 
interactions, which may result in nuclear safety standards being applied uniformly to the entire 
plant rather than being adjusted, at the component level, according to its safety relevance 
(NIRAB, 2019). The adoption of risk-informed frameworks may provide a set of rules adequate 
to avoid this type of situation (Box 15). 

  

 
55. PSAs seek to quantify the probability of cascading failure occurrence that, combined with potential 

consequences, yields the associated risks. 
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Box 15: ONR’s risk-informed decision-making process 

The United Kingdom’s Office for Nuclear Regulation (ONR) deserves attention for its significant 
efforts to ensure proportionate and adequate application of the ALARA/P principle, using risk-
based approaches to inform regulatory decision-making. 

In Risk Informed Regulatory Decision Making (ONR, 2017), the ONR details the main principles and 
criteria guiding its regulatory decision-making process. Its philosophy is based on “tolerability of 
risks”, which does not mean acceptance of risk but rather the willingness to live with it to secure 
certain benefits for society, in the confidence that risks are being technically and properly 
controlled. Risks are not therefore ignored, but kept under review and reduced as much as is 
reasonably practicable. For a risk to be acceptable, however, the society must be prepared to accept 
it. Consequently, the ONR’s regulatory framework includes a set of criteria to decide whether risks 
are unacceptable, tolerable or broadly acceptable. ALARA/P guidelines are used to proceed though 
the risk tolerability continuum, underpinned by risk-informed approaches and metrics.  

When it is considering whether licensees need to implement further measures, the ONR compares 
the degree of risk reduction with “the sacrifice, whether in money, time or trouble involved in the 
measures necessary to avert the risks.” Unless the licensee can demonstrate a gross disproportion 
between these two factors and prove that the averted risk would be insignificant, additional 
measures to reduce risks have to be considered.  

The ONR also indicates that “there is no precise legal factor or algorithm able to define gross 
disproportion between the costs associated with the measures to reduce risk and the benefits in 
terms of risk reduction.” Numerical calculations are also rare, so in its decision-making the ONR 
recognises a disproportion factor (the cost-benefit ratio of a given solution) of up to approximately 
ten (this value is based on evidence from the Sizewell B public inquiry). Also, when the 
disproportionality of regulatory decisions is being assessed, the initial position of the risk on the 
tolerability continuum must be considered. Applying a costly solution to move risk from the 
“unacceptable” to the “tolerable” zone is not the same as using expensive means to shift it from 
“tolerable” to “broadly acceptable.” 
 

 

Consequently, in addition to the stability and predictability conditions highlighted in 
Chapter 3, regulatory frameworks can support cost reductions by revisiting regulatory interactions 
and approaches through: 

• Increasing awareness among regulators that their activities increase the cost of the 
technology (by an amount that is necessary for the benefit of society but that should be 
proportionate to the risk avoided), and engendering among regulators a willingness to 
understand how their decisions may impact the final performance of the technology. For 
instance, in its 2019-2020 corporate plan the ONR expressed its commitment to develop 
greater understanding of the costs imposed by regulatory decisions, to use economic 
advice in framing and assessing its regulatory decisions, and to refine its current 
guidance on ALARA/P and gross disproportion (ONR, 2019). 

• Identifying mutually beneficial situations, in which regulators and licensees can 
co-operate while maintaining regulatory independence and the highest level of safety. 
For instance, Box 16 presents success story of revisited regulatory interactions for cost 
optimisation on the Horizon project, and the design simplifications approved for the 
EPR2 design are also a good illustration (see Box 11). These examples show that stringent 
regulation does not necessarily imply higher costs when safety efforts are more focused 
and regulatory interactions permit some flexibility while satisfying the interests of both 
parties. Early engagement with regulators is essential. 

• Avoiding misinterpretation and fostering the clear and transparent communication of 
requirements. Poorly interpreted requirements may lead to a lack of focus and additional 
efforts with limited added safety. This is even more important if the requirements are 
new and are imposed once construction has begun. 
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• Aligning regulator and licensee objectives and outcomes. Gaining design acceptability is 
an important objective, but so is the construction of a safe, secure, environmentally 
acceptable and affordable reactor. Regulators can establish these conditions, but 
licensees should also be proactive and work closely with regulators in developing clear 
safety cases and fixing potential shortfalls. 

Governments also have a key role in establishing such a regulatory framework. They are 
responsible for setting regulator missions and objectives, while at the same time providing the 
means necessary to guarantee the independence and transparency of regulatory decisions (NEA, 
2011). In the United Kingdom, the ONR’s quest to better understand the economic costs of 
regulation is framed by the national Better Regulation initiative (ONR, 2019). This initiative 
requires the evaluation of business impact targets (BITs) to determine the financial impact that 
qualifying regulatory provisions have on business (in this case, the nuclear industry). National 
missions may also seek to limit potential distortions of the ALARA/P principle towards “zero-
risk” approaches that may not maximise benefits for the whole society. 

Finally, the innovative organisational modes described in this chapter (digital transformation, 
knowledge management, lean management, etc.) could also be adopted by regulatory bodies. The 
quality and efficiency of regulatory activities could thus be improved, resulting in lower costs as 
well as greater safety. An interesting example is the NRC’s transformation plan (see NRC, 2019). 

 

Box 16: Cost optimisation with regulator involvement:  
The Horizon project 

This case study illustrates the value of securing a design that is ready for construction and has 
undergone design optimisation prior to the beginning of construction. 

From 2012 until January 2019, Hitachi invested in potential UK nuclear new-build projects to deploy 
twin Advanced Boiling Water Reactor projects at Wylfa in North Wales and at Oldbury on the 
Severn river. In January 2019, Hitachi decided to “pause” these projects due to the suspension of 
further investment. The lead project at Wylfa was in an advanced stage of development, with the 
reactor design having passed the UK Generic Design Assessment (GDA). Ongoing activities at the 
time of suspension were focused on informing a final investment decision, with the anticipated 
subsequent construction expected to support commercial operations of the first reactor in the mid-
2020s. (The decision to pause this investment is a separate matter outside the scope of this report.) 

The 2016 estimate of construction costs for the Wylfa NPP deploying the UK GDA design was 
evaluated as unaffordable within the project’s business case (project economics were determined 
by revenue from a contract for difference with an expected strike price of around GBP 75 per 
megawatt hour [/MWh]). The project challenge addressed in this case study reflects the need to 
reduce construction costs through design optimisation to achieve acceptable construction and 
operational risks while delivering a viable project business case. 

A wide range of potential cost reduction opportunities was identified, including: 

• Avoiding unnecessary system and building duplication by deploying an integrated twin unit 
rather than two single units, as per the GDA evaluation. 

• Optimising the plot plan to reduce costs, including by reducing the number and size of support 
buildings and associated service galleries.  

• Modifying engineering solutions to accommodate the hazards and constraints of the specific 
proposed UK site rather than the generic UK site. 

• Employing alternative engineering solutions to mitigate selected natural hazards identified as 
significant cost drivers by extreme value analysis (e.g. peak maximum ambient temperature). 

• Using an alternative approach to characterise the seismic hazard and associated ground 
motion spectrum.  

• Optimising the redundancy and diversity of significant safety systems as necessary to meet 
the requirements of the safety case. 
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Box 16: Cost optimisation with regulator involvement: 
The Horizon project (cont’d) 

The approach for reviewing over 100 potential optimisation opportunities was designed to: 

• Provide an understanding of the potential impact on the safety case.

• Describe a set of principles for how to explore these opportunities.

• Maintain the integrity of the GDA as much as possible.

• Minimise deviations from the GDA as much as possible.

This review was implemented from October 2016 in parallel with completion of the GDA, with 
constructive results: 

• A set of “papers of principle” was developed describing how the design optimisation phase
would be delivered and how the safety case would be achieved. These papers were to ensure
the UK regulators’ understanding of the process and approach.

• From the individual opportunities, associated individual engineering propositions to
implement the papers of principle were developed and finalised by May 2017.

• A regulatory review of Horizon’s proposals was completed by the end of 2017.

Horizon’s design optimisation process produced numerous outcomes: 

• Regulators were engaged and motivated to support this process at the executive level.

• Regulatory knowledge and experience in general were enhanced by the GDA evaluation of two
reactor designs already evaluated for potential UK deployment.

• The process benefitted from the capabilities and experience of both the project team and the
regulators.

• Benefits were realised from challenging the initial design assumptions associated with co-
locating units on the same site.

• It was discovered that design and regulatory efforts can be reduced by focusing on a specific
rather than generic deployment site earlier in the project development process.

• The approach of designing a project to mitigate the impact of natural hazards may often use
data from extreme value analysis, but using other approaches may be beneficial when they
can be justified.

• Significant savings were successfully realised in the estimated construction cost of a twin-unit
ABWR at Wylfa.

• There were indications that further significant cost reductions could be realised if there were
a commitment at the outset to four units at the same site – greater savings than for an initial
commitment to a twin unit with potential for a second twin unit at the same location.

The design optimisation phase pursued by Horizon realised expected overnight capital cost 
reductions exceeding 20% for twin-unit ABWR deployment at Wylfa, compared with deploying two 
units as per the GDA design of the UK ABWR. Horizon’s design optimisation phase benefitted from 
a regulatory engagement process that gave Horizon and its stakeholders confidence that the 
optimised design for construction was acceptable to safety and environmental regulators. This case 
study confirms that a period of design optimisation focused on constructability and cost reduction 
is an important step in the project development process prior to construction commitment. With 
appropriate regulatory engagement, significant cost savings can be demonstrated through 
improved engineering without compromising safety and environmental standards. 
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5. Long-term opportunities to reduce nuclear construction costs 

As described in Chapter 4, countries adopting serial construction in the decade ahead could 
benefit from lower costs and risks thanks to implementation of a set of incremental 
improvements such as design optimisation, the adoption of new technologies and better 
organisational and construction approaches, as well as revisited regulatory interactions. These 
cost-saving strategies would also help mitigate nuclear risks in several dimensions as will be 
further detailed in Chapter 6. 

In the longer term (beyond 2030), further cost reductions could be unlocked through greater 
harmonisation and materialisation of the economic case for more disruptive technologies such 
as small modular reactors (SMRs).56 

These new opportunities are part of a long-term industrial performance strategy that 
envisions sustained efforts to activate the various cost reductions drivers and continuously 
raise the sophistication of products and processes by capitalising on learning acquired in each 
successive construction. The interplay between the product and the processes enables 
complementarities and synergies among different technology families. Evidence gathered for 
this study suggests that long-term cost reductions are achievable and that countries in the most 
advanced stages of learning are moving towards this direction.  

5.1 The role of harmonisation at the industrial and regulatory levels 

The concept of harmonisation is intimately related to the standardisation process detailed in 
Section 4.1.2. In fact, the uniformity sought by standardisation practices is not only limited to 
design but can be extended to the governance of nuclear activities. Current governing 
frameworks are essentially country-specific, creating a regulatory heterogeneity that may 
impact the overall cost of nuclear technology.  

This report considers that harmonisation encompasses all activities and processes that 
seek to increase the homogenisation and convergence of nuclear rules among countries at three 
different levels (Figure 33): 

• legal (governments); 

• licensing and regulatory guidelines (nuclear regulators); 

• codes and standards of practices (industry). 

Each level is characterised by its own specific challenges and developmental pace, and even 
though complete harmonisation is unlikely, experience has shown that is possible to achieve 
consensus in some specific areas, particularly at the regulatory and industrial levels. 

 

 
56.  SMR progress has been significant in recent years, with some developers announcing the first 

prototypes for before the end of the decade. Nevertheless, recent work suggests that for SMRs to fully 
yield their expected benefits, several challenges in terms of licensing, harmonisation, technology risks 
and supply chain development must first be overcome (NEA, 2019). The extent of these challenges could 
vary depending on the maturity of different concepts (i.e. light water-cooled versus alternative coolants). 
REDCOST experts recognise that these issues are not likely to be resolved until after 2030. 
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Figure 33: Harmonisation levels 

 

5.1.1 Licensing regimes 

Licensing regimes set the requirements, guidelines and processes that regulators use to assess 
safety and certify nuclear designs. At the international level, the International Atomic Energy 
Agency (IAEA) provides high-level safety standards and recommendations; although they are 
broadly accepted by most countries, they are not binding (WNA, 2013). Furthermore, their level 
of detail is low and they are often subjected to interpretation. More comprehensive design, 
engineering and licensing requirements are therefore needed, resulting in regulatory regimes 
that tend to vary from country to country. 

Areas in which harmonisation is still lacking include the defence-in-depth concept, the 
principles of diversity and redundancy, physical separation, external hazards (e.g. air-crush 
protection) and severe accident management. Consequently, vendors must perform design 
modifications and undergo certification processes for every host country. This situation turns 
nonrecurring design and licensing efforts into recurring activities and thus hampers nuclear 
learning in reactor construction abroad. Extra costs incurred by the lack of harmonisation 
(i.e. adaptation costs) are estimated at approximately 30% of the engineering, procurement and 
construction (EPC) costs of a generic nuclear power plant (NPP) (see Box 14). This value may vary 
depending on the extent of the regulatory gap between countries. 

Nevertheless, harmonisation at the regulatory level may encounter some obstacles:  

• The protection of national sovereignty: While respecting the internationally shared 
fundamental principles of nuclear safety, some countries may be reluctant to accept 
certain requirements, as they may not be aligned with their national interests and 
regulatory practices. Protecting the sovereignty of national regulators is also important 
to preserve the nuclear industry’s social licence to operate in a country and the public’s 
acceptance of regulatory decisions. This aspect inevitably has a strong political 
dimension and explains why regulatory harmonisation may face greater inertia than 
similar initiatives at the industrial level.  

• Increased stringency: There is also a risk that harmonised regulations, being the sum of 
the highest expectations in all fields for all countries, may become too stringent and thus 
more expensive and less practical.  

International collaboration therefore remains essential to identify areas of regulatory 
convergence. Two initiatives lead harmonisation efforts internationally: the Multinational 
Design Evaluation Programme (MDEP) and Cooperation in Reactor Design Evaluation and 
Licensing (CORDEL). (The latter is actively building on aircraft industry experience.) As is further 
detailed in Section 5.2, harmonisation is central to the development of SMRs.  

Legal
(government)

Licensing
(regulators)

Codes & standards
(industry)
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5.1.2  Codes and standards 

Similar to licensing regimes, nuclear codes and standards may vary from one country to another. 
Typical national quality standards include the American ASME NQA-1 code,57 the French RCC-
M and RCC-E codes and German KTA standards. Even if a certain level of convergence has been 
achieved among codes, some differences persist, and different total quality management 
systems still prevail at the national level.  

More importantly, the cost of adopting nuclear standards is quite significant: for instance, 
it can almost double the cost of an industrial-grade valve (see Figure 28). Most of the cost burden 
is associated with the establishment of a quality management system (i.e. qualification process). 
As a result, some companies may be reluctant to qualify their processes, especially if the 
number of orders is limited, reducing the pool of qualified suppliers available.  

In 2010, Bureau Veritas and Framatome (formerly AREVA NP) founded a global initiative, the 
Nuclear Quality Standard Association (NSQA), to lead harmonisation efforts while 
strengthening the quality management processes of the nuclear industry. Their efforts resulted 
in publication of the ISO 19443 in 2018 (ISO, 2018). This standard internationally harmonises the 
minimum level of requirements, creating a common language that can accelerate the 
qualification of a global supply chain. To guarantee the success of the ISO 19443 standard, 
further efforts in the accreditation process and in overseeing implementation may be needed 
in the near future. It is essential that the nuclear industry manage this process, with the 
endorsement of the regulatory bodies. 

Given the nuclear sector’s long time frames, it is difficult to describe with certainty the 
equilibrium that could be achieved through the combination of modularisation, harmonisation 
and potential externalisation strategies covered in this report. While modularisation has some 
limits, improved standardisation and flexible co-operation among different vendors, regulators 
and suppliers are likely to play significant roles in the future. In some cases, this will require 
changes to leadership practices and the type of cultural shift that is only possible in the long 
term. Additionally, the digital transformation is advancing quickly and will certainly reshape 
the final situation thanks to greater information traceability. 

5.2  Construction costs of small modular reactors 

The difficulties encountered in large Gen-III nuclear projects in western OECD countries have 
undermined investor and decision-maker confidence in nuclear energy, particularly in Gen-III 
designs. Although this report explains how the costs and risks of large contemporary nuclear 
designs can be reduced, large Gen-III reactors will to some extent continue to be complex, 
capital-intensive projects with significant labour costs and on-site work. Interest is therefore 
growing in more evolutionary concepts – “beyond” large Gen-III designs – that incorporate all 
the learning and techniques of previous projects (largely covered in this study) to yield greater 
productivity and predictability per unit. This could be the case for the SMR delivery model, for 
instance.58  

SMRs have unique key design features that allow them to capitalise more extensively on 
some of the cost reduction strategies described in this report (Box 17). However, the smaller size 
of SMRs has a major economic drawback: the inability to benefit from economies of scale. 
Instead, their economic performance can be improved through series production and higher 
learning rates thanks to (also see Figure 34): 

• Simplification: Passive mechanism improvements and greater design integration would 
reduce the number of components and result in containment building savings. 

 
57. This standard has been widely adopted as part of the technology transfer agreements signed by 

American companies with several countries. 

58. In this report, the term SMR refers to both light water-cooled and advanced concepts (see Box 17). 
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• Standardisation: The lower power output of SMRs reduces the need to adapt to local site 
conditions, raising the level of design standardisation compared with large reactors.  

• Modularisation: Smaller SMR size means that transporting their modules would be easier 
than for large reactors. As illustrated in Figure 32, the degree of modularisation increases 
considerably for power outputs of less than 500 megawatts of electrical capacity (MWe). 
This trend could be improved with more aggressive modularisation techniques tailored 
to the logistical constrains and transport standards of each country. It is estimated that 
60-80% factory fabrication levels are possible for SMRs (with power outputs below 
300 MWe) (Lloyd, 2019). This would also facilitate the implementation of advanced 
manufacturing techniques such as electron beam welding and diode laser cladding by 
2025 (EY, 2016). Others, such as powder-metallurgy hot isostatic pressing and additive 
manufacturing, are at lower technology readiness levels but significant progress is being 
made (EPRI, 2018). 

• Harmonisation: Having access to a global market is necessary to foster series-production 
economies, but this is possible only with regulatory and industrial harmonisation. 

 

Box 17: SMR definition, classification and key design features 

SMRs are generally defined as reactors with power outputs of between 10 MWe and 300 MWe that 
integrate higher simplification, modularisation, standardisation and factory-based construction in 
their design to maximise the economic advantages of series production. The various modules can 
be transported and assembled on-site, with the shorter lead times enhancing construction 
predictability and savings. 

SMR designs can be classified in a number of ways (NEA, 2011), as they involve a variety of coolants 
and fuel arrangements at different technology readiness levels (TRLs) and licensing readiness 
levels (LRLs): 

• Light-water (LW)-cooled SMRs: Some vendors are using the well-stablished LW-cooled 
technology to propose Gen-III designs with unique features thanks to the lower power output. 

• Generation-IV or advanced SMRs: Some SMRs integrate alternative coolants (other than light 
or heavy water) and fuel arrangements into their designs, producing more revolutionary 
concepts. They are essentially based on the six systems selected by the Generation IV 
International Forum (GIF) in 2000 59  and could also offer additional economic advantages 
thanks to higher outlet temperatures, among other qualities. Advanced materials and their 
qualification are key research and collaboration areas. 

• Micro Modular Reactors (MMRs): More recently, smaller concepts of less than 10 MWe have 
been proposed. They are capable of semi-autonomous operation and have improved 
transportability compared to other SMR concepts. They involve a wide range of technological 
approaches including Gen-IV systems and even heat pipes.60 

Around 50 SMR concepts were under development in 2018: 50% LW SMRs and the other 50% Gen-IV 
(IAEA, 2018). The LW SMRs are at a higher TRL, as they take advantage of experience accumulated 
with the existing fleet of water-cooled reactors and therefore encounter fewer regulatory 
uncertainties. It is important to mention that while the term SMR has been adopted around the 
world to refer to all small reactor designs, there are significant differences among the major types, 
particularly in their degree of modularity. 
 

 
59. Sodium-cooled fast reactor (SFR); very-high-temperature reactor (VHTR); supercritical water-cooled 

reactor (SCWR); molten salt reactor (MSR); lead-cooled fast reactor (LFR); and gas-cooled fast reactor (GFR). 

60. Heat-transfer devices that combine the principles of both thermal conductivity and phase transition to 
effectively transfer heat between two solid interfaces. They are extremely simple, as the coolant flows 
by means of capillary action, centrifugal force or gravity within the tube. They are also being tested in 
experimental nuclear-propulsion aerospace applications (NASA, 2018). 

https://en.wikipedia.org/wiki/Heat_exchanger
https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Phase_transition
https://en.wikipedia.org/wiki/Interface_(matter)
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Box 17: SMR definition, classification and key design features (cont’d) 

Although simplification, modularisation and standardisation were described in Chapter 4 as 
potential strategies to reduce the costs of large projects, the size of Gen-III reactors, and the 
layering of their auxiliary systems impose several design constraints that may limit the 
applicability of these approaches. The impact of size is particularly acute for simplification and 
modularisation, but small nuclear cores have advantageous features that counteract these 
technical limitations (Ingersoll, 2009): 

• Enhanced passive or gravity-driven mechanisms: The lower power output and higher surface-
to-volume ratio offered by smaller cores increases the efficiency of passive safety systems for
both normal and off-normal operating conditions. Many LW SMR designs have a very large
water capacity to cool reactor systems even under extreme circumstances.

• Integral designs: An integral system incorporates all the components of the nuclear steam
supply system (NSSS) into a single vessel. This is viable with small cores, as otherwise the size 
of the vessel would be prohibitively large.

• Reduced inventories: The total quantity of radionuclides that could be potentially dispersed in
accidental conditions – referred to as the source term – is roughly proportional to the power
level. Smaller inventories may enable reduced shielding in various systems and components,
thus simplifying the design. Smaller inventories may also permit emergency planning zones
(EPZs) to be smaller, which would increase siting flexibility.

SMR features also allow for below-grade siting, providing more protection from natural 
(e.g. seismic or tsunami, depending on the location) or man-made (e.g. aircraft-impact) hazards. 

Nevertheless, regulator experience with some of these new design features may be limited. These 
innovations may also introduce new safety issues that will have to be assessed in more detail. 
Regulatory uncertainty is even higher with Gen-IV designs, as current licensing regimes may 
require some adjustments. 

The cost reduction potential of these drivers for large reactors has already been covered in 
this report. In fact, SMRs (like any new nuclear product) can follow the same learning curve as 
the one illustrated in Figure 17 and may exploit the same cost reduction approaches. However, 
the series effect, simplification, standardisation, modularisation and harmonisation will carry 
more relative importance in order to counterbalance the lack of economies of scale compared 
to contemporary large reactors. The potential of these strategies to reduce costs has been well 
documented in other industries, such as shipbuilding and the aircraft industry, in which serial 
manufacturing has produced learning rates of 10-20% (NNL, 2014). Nevertheless, these practices 
still need to be proven for SMRs. 

Furthermore, the timely deployment of this technology will also require new licensing 
regimes. Current licensing frameworks typically rely on an extensive experience base with large 
single-unit LW reactors and proposed LW-based SMRs have similar operating conditions and 
fuel arrangements, which should facilitate licensing. However, limited experience with these 
novel designs poses challenges in demonstrating and approving their safety case. Moreover, the 
introduction of alternative fuels and/or coolants (i.e. Gen-IV SMRs) will translate into greater 
deviations from previous regulatory paradigms and may require more flexible licensing 
approaches (Sainati, Locatelli and Brookes, 2015). 

Consequently, attaining economic benefits for SMRs will require a co-ordinated effort by 
the various stakeholders, a dedicated policy and regulatory framework and, most importantly, 
a global market. Regulators will therefore need to determine how they can work together to 
devise more streamlined and harmonised regulatory frameworks to create a true global SMR 
market; experience gained through initiatives such as the MDEP, CORDEL and NSQA could prove 
useful in this process. It is also imperative to appropriately estimate the size of this market to 
establish a robust supply chain (i.e. key partnerships) and sustainable construction know-how 
that results in competitive capital costs (Lyons, 2020). 
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Finally, it is important to note that, beyond the potential cost savings described above, SMRs 
also offer a different value proposition in terms of financing, ancillary services, and off-grid and 
non-electric applications that could also improve their economic performance (NEA, 2019). 
Unfortunately, these prospects are outside the scope of this study. 

Figure 34: SMR economic drivers that help compensate for diseconomies of scale 

 

5.3 Long-term industrial performance and design development 

Previous sections of this report address numerous construction cost reduction opportunities for 
nuclear systems in several areas (i.e. technology, organisation, regulatory) that allow for the 
main underlying risks to be contained and even mitigated. They tackle both direct and – more 
importantly – indirect costs, the latter being determined by governance, including project 
management.  

Specific recognition has been given to the dichotomy between product (i.e. design) and 
process, in light of strong evidence that rising nuclear construction costs have consisted largely 
of indirect costs in the past ten years (see Figure 12). Delivery processes therefore warrant 
special attention. 

Projects are one-off temporary endeavours that aim to complete a number of tasks on time 
and on budget, to meet the expected requirements. Once they are completed, the project teams 
simply leave, taking their valuable experience with them most of the time. Conversely, products 
do not have an end date but a lifecycle and they are designed to create value and satisfy 
customer needs which may evolve over time. Consequently, products are more permanent 
compared to projects and require multidisciplinary teams to continuously integrate 
improvements and adaptations to customer specifications. They incorporate product-oriented 
“enabling” processes that foster the sophistication of the product, as well as of the associated 
fabrication/construction processes for their successful delivery. The various nuclear 
construction cost reduction drivers, with their potential timelines, can be categorised according 
to this framework (Figure 40).  

The nuclear industry’s long-term economic performance can be achieved through constant 
mobilisation of the various cost reduction enablers presented in Chapter 3, continuously 
improving designs by capitalising on learning gained from replications and new projects. 
However, the number of project orders must be large enough to drive continuous learning. 
Furthermore, the elements driving cost savings result from the interplay between design 
optimisation approaches and the enabling construction processes. This interplay is key, as the 
boundaries between product and process are sometimes blurred. For instance, modularisation 
is a construction process that also requires significant work in the design phase. Similarly, 
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standardisation is not limited to the design phase but can be also interpreted as an enabling 
process, accelerating transactions with the supply chain. 

At the same time, the product-oriented framework presented in Figure 35 is compatible 
with the development of different families of products (i.e. a product portfolio) at various 
maturity, growth and market share levels. It is therefore possible to create an optimised product 
portfolio wherein complementarities and synergies among products and processes can be 
explored. For instance, a mature product with well-established market shares could support 
other products that are at earlier stages of development and facing more risks. 

Figure 35: Cost reduction as interplay between product and process 
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This approach is particularly interesting for SMR technology, as it involves numerous 
concepts at different TRLs and LRLs. Due to their innovative nature, SMRs may introduce 
additional technology and supply chain risks that do not necessarily exist with current large LW 
reactor designs.61 To be credible options by the early 2030s, prototypes and demonstration units 
will be needed to prove the announced benefits of SMRs. From a cost perspective, these 
technologies should follow the same learning curve illustrated in Chapter 3, but the various cost 
reduction drivers will not carry the same weight (see Section 5.2).  

Moreover, several learning factors, such as project management, construction advances 
and innovative organisational processes, are not technology-specific, meaning that SMRs 
should also benefit from progress made with large NPPs in the 2020s. This illustrates the 
complementarity between both technology families, with the next large Gen-III nuclear 
constructions playing an important role in the future success of SMRs. 

61. LW rector-based SMRs incorporate non-traditional components such as helical coil steam generators,
internal control rod drive mechanisms or new in-vessel instrumentation for which operational
experience is limited. Plus, Generation-IV SMRs will include features that have never been tested before. 
Pilot facilities could help demonstrate these features and introduce the new technologies to the market, 
which is consistent with historical experience (NEA, 2019).
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Countries at more advanced stages of nuclear construction learning are already working at 
continuously improving and optimising their product portfolios similarly to other sectors, 
Russia being a prime example (Box 18). 

 

Box 18: Russia’s long-term industrial performance  
and product design development 

According to preliminary data from the forthcoming IEA/NEA Projected Costs of Generating Electricity 
2020 report, the overnight costs of new nuclear construction in Russia are 54% below the OECD 
average. In fact, having accumulated more than 30 projects at home and abroad, Russia is already 
benefitting from a long-term industrial strategy. Stimulated by a constant inflow of projects, 
Rosatom, the state-owned company in charge of designing and constructing nuclear reactors, is 
leveraging experience from previous and ongoing projects to continuously refine its products and 
processes and drive down nuclear costs. Its long-term industrial strategy (Figure 36) provides 
insight into how, with a sufficient level of experience, the cost reduction opportunities explored in 
this report can be adopted at the various project stages: 

• Pre-design: During this phase the first cost estimates are performed and the contract strategy 
is defined. The availability of a reference plant facilitates this process and increases the 
accuracy of the estimates. Localisation opportunities could be exploited, especially for 
commodities and non-safety-related equipment. Any progress in regulatory or industrial 
harmonisation should already be identified in this phase to minimise qualification and 
engineering work.  

• Design: Based on the maturity of the design, sound quality control systems for design 
documentation as well as real-time time and resource management systems can be developed 
and supported by more advanced digital solutions. At the same time, design optimisations can 
be performed, in accordance with the desired cost target and by means of new design tools 
and methodologies, to streamline engineering efforts while increasing standardisation and 
reducing the risk that reworks will be required. 

• Procurement and construction: Execution of the contract strategy could benefit from effective 
project management with experienced teams, and a standardised supply chain built on long-
term contracting schemes while exploring localisation opportunities when possible. In this 
phase, several technical construction advances and innovative processes can be implemented 
to increase productivity, facilitate quick decision-making and ensure end-to-end monitoring 
and analysis of the execution of supply contracts and construction/installation works. 

Figure 36: Long-term industrial performance fishbone diagram 
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Box 18: Russia’s long-term industrial performance  
and product design development (cont’d) 

Rosatom is using the experience it has gained with Gen-III large reactors and civil marine nuclear 
propulsion to develop other products. In December 2019, the floating Akademik Lomonosov SMR 
was connected to the grid. It is based on the LW-cooled KLT-40S concept, from the RITM reactors 
series (i.e. Russian civil marine nuclear propulsion reactors).62 Six units of a new evolutionary 
concept, the RITM-200, have already been manufactured and installed in several icebreakers 
(Moskvin, 2019), and Rosatom is planning to extend this technology to land-based industrial 
applications. Two sites are being considered, with works to start by 2024 (NucNet, 2020b). This 
reflects Rosatom’s strong product-oriented and long-term industrial vision in developing nuclear 
technology. 
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Part 3: Policy frameworks to deliver competitive nuclear 
projects, and policy recommendations 

The overall nuclear policy framework is central to implementation of the construction cost 
reduction strategies identified in Part 2. Part 3 therefore addresses the key areas in which 
governments can support the delivery of future nuclear new-build projects, with Chapter 6 
devoted to the financing framework and Chapter 7 offering key policy recommendations.  

As already emphasised, financial costs are a central area for cost reductions, as they can 
make up more than 80% of capital costs. Having access to affordable financing therefore has a 
first-order impact on the levelised cost of electricity (LCOE) from nuclear power. The cost of 
capital is primarily driven by the risk premium expected by investors, which reflects the 
allocation of construction and market risks. 

Today, the cashflow structure of nuclear projects, the associated perceived risks (founded 
largely on the recent poor construction performance record) and current electricity market 
conditions provide clear rationale for state commitment, regulation and, most likely, 
transitional financing in the early stages of the learning process. State financing can be provided 
in various forms: direct (i.e. equity, debt); indirect (market regulation, guarantees); or a 
combination of both. Financial support from foreign governments (e.g. through export credit 
agencies) could also have a positive impact. 

While this government role in financing is particularly important for restarting nuclear 
programmes, it should be viewed as transitional, as industry maturity will reduce both risks and 
costs. 

In best-performing countries, governments lead the nuclear construction programmes. 
They absorb the residual risks and provide positive and long-standing policy signals as well as 
the timely decision-making necessary for adequate industrial planning and optimisation. A 
nuclear power programme must be seen as a social contract among policymakers, industry and 
society, the primary beneficiaries of successful project delivery.  
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6.  The role of financing frameworks to deliver  
cost-competitive nuclear new-build 

As discussed in Chapter 2, the high fixed costs, low variable costs and 60-year operating lifetime 
of Gen-III nuclear reactors mean that the cost of capital has a first-order impact on the levelised 
cost of nuclear energy.  

The cost of capital is determined primarily by the risk premium expected by investors, 
which reflects the allocation of construction and market risks. Today, the track record of delays 
and costs overruns for recent first-of-a-kind (FOAK) projects has heightened investors’ risk 
perception and further policy interventions may be warranted to effectively allocate and 
mitigate these risks. This chapter outlines how to assess and allocate risks, particularly for post-
FOAK projects, and discusses the support policies governments can implement. 

The scale of these challenges means that cost and revenue risks may be considered more 
important for investment decisions than the cost estimates. Consequently, the core issue of 
“financing challenges” is not the financing per se, but rather the effective allocation and 
mitigation of risks, which will be reflected to a large extent in the financing conditions of the 
project. 

6.1  Financing conditions and nuclear power cost-competitiveness 

Financing conditions directly affect the levelised cost of electricity (LCOE) and therefore the 
competitiveness of new nuclear construction. These conditions are strongly influenced by both 
the nature of the risks (with higher risks leading to a higher expected rate of return on 
investment, and therefore a higher cost of capital) and the organisational and ownership 
arrangements that allocate risks among stakeholders. Policy intervention plays a central role, 
as governments may decide to directly or indirectly carry a certain share of the risk. As 
discussed in Section 6.3.3., this can be arranged as part of policies to establish the conditions 
for developing low-carbon technologies, to ensure security of supply, or to correct for market 
failures. Strategies can also be introduced to transfer some of the risk to the final consumer. 

Figure 37 illustrates the impact of the cost of capital on the LCOE of nuclear power: a 6 to 
9% increase in the nominal weighted average cost of capital (WACC) raises the levelised cost by 
50% in a reference scenario with an overnight cost of USD 4 500 per kWe and a lead time of seven 
years. Reducing the nominal WACC to 5-6% would be in line with the social discount rates 
typically used to assess public investments, such as infrastructure projects (NAO, 2017). 
Assuming a 2.5% inflation rate, this equates to a 3.5% real WACC – in line with normative 
estimates of the social discount rate (see footnote 68). 

At a holistic level, however, it is important not to consider financing conditions per se as a 
lever to reduce the cost of nuclear power, as they simply reflect the underlying industrial 
organisation and government/public participation choices that designate risk allocation and 
mitigation. The financing framework is therefore defined by the organisational and ownership 
structures at the project level, as well as by the national and international contexts that 
determine the available sources of financing. For this reason, the overall policy framework 
should especially be considered, as government intervention can play a significant part in 
carrying and mitigating some of the risks associated with nuclear construction, as well as in 
addressing the higher risk perception associated with recent FOAK projects. 
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Figure 37: LCOE of a new nuclear power plant project according to the cost of capital 

 

Note: MWh = megawatt hour. Calculations based on OCC of USD 4 500 per kilowatt of electrical capacity (/kWe), a load factor 
of 85%, 60-year lifetime and 7-year construction time 

 

Box 19: Addressing risk perception for nuclear new-build projects 

The recent delays and cost overruns of nuclear new-build projects have raised risk perception for 
potential investors, but also for society as a whole. This directly affects risk premiums and, 
therefore, the cost of financing. 

Furthermore, the higher cost of financing resulting from greater risk perception can further 
reinforce the perception of nuclear construction risks for future projects, creating a cycle in which 
nuclear technology competitiveness is hindered well into the future. 

Addressing risk perception requires, first and foremost, effective mitigation of construction risks 
by delivering upcoming new-build post-FOAK projects without significant delays or cost increases. 
At the same time, government commitment, regulation and financial support (at least transitional) 
are essential to attract private investment in long-lived assets such as nuclear power plants (NPPs). 

Lastly, greater engagement between nuclear new-build developers and the financial sector can 
further mitigate the misperception of risk. This is especially important in the early developmental 
stage to put the project on the right track, especially for reputational risks, which are hard to 
quantify. 
 

6.2  Construction risks: Allocation and mitigation priorities 

Identifying and addressing risks during construction is standard procedure in the process of 
financing infrastructure projects. 

A variety of risks from project planning through execution can impact new nuclear plants 
and directly or indirectly lead to construction costs overruns. Indeed, understanding and 
appraising these risks is often a key factor in investment decisions, more important than cost 
estimates. Today, the track record of recent FOAK projects and the broader specificities of 
nuclear projects are making this assessment particularly sensitive.  

The sensitivity of nuclear projects arises from a combination of factors: the scale of 
investments; the long lead times; and the complexity of the decision-making process involving 
multiple interested stakeholders. It is therefore critical to address risks – particularly construction 
risks – early in the development phase, with all the relevant stakeholders, to support a robust and 
sound decision-making process as well as address potential risk perception issues. 
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6.2.1  Nuclear construction risks and key mitigation priorities 

Construction risks can be divided into three broad categories: 

• Technology risks are associated with reactor design, particularly design maturity, but 
also with the integration of new technologies. 

• Organisational risks relate largely to project management but also the capabilities of the 
supply chain to meet quality assurance standards and to manufacture key components.  

• Policy framework risks include policy issues related to safety regulation, the financing 
framework and political support. These risks need to be considered as early as possible, 
but some will persist after commissioning.  

In addition, post-construction risks across the project lifetime will also need to be assessed 
using the same approach (IAEA, 2017; NEA, 2008). These risks can impact costs and, just as 
importantly, future revenues: 

• Market risks: lack of long-term revenue certainty (prices and quantities), including CO2 
price trajectory (e.g. functioning of carbon markets). 

• Operational risks: plant performance, reactor availability, fuel supply. 

• Liability risks: insurance and insurability, nuclear liabilities, natural disasters and force-
majeure circumstances. 

• Waste management and decommissioning risks. 

Once identified, the appraisal of these risks typically relies on a well-formalised process 
wherein each risk is defined in terms of origins, probability of occurrence, and potential 
consequences. Consequences of construction risks fall primarily into two categories – delays 
and costs overruns – but non-completion is also possible, particularly if there is a change in 
political support. Sub-optimal performance once the plant is operating may also be an issue. 

The risk assessment process is therefore project-specific and can be summarised in a risk 
criticality matrix (Figure 38), then integrated into a dedicated document – a project risk register 
(PRR) – by the developer. This document is central to discussions with key stakeholders, within 
the industry and at the government level to establish the contractual framework. It is also vital 
for discussions with the various institutions involved in financing: current/future equity 
shareholders, debt-provider financial institutions, and guaranteed providers such as export 
credit agencies (ECAs). 

Figure 38: Illustrative risk criticality matrix 
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Risk mitigation priorities will need to be assessed based on the PRR. Affecting this process 
are the short-term costs reduction opportunities explored in Chapter 3, which are intrinsically 
linked with risk mitigation priorities for future post-FOAK projects (Table 5). For example, risks 
related to design could be mitigated largely by starting construction only when a high level of 
design maturity has been achieved, especially once a reference plant has already been built and 
licensed by the same regulatory authority. Similarly, project management challenges could be 
further addressed by using new digital tools such as product lifecycle management (PLM) and 
systems engineering.  

Table 5: Key risk categories and mitigation priorities 

Risk category Principal risks Risk mitigation priorities 

Technology 
risks 

Design  

- Implications of design 
misspecification:  
• redesign during construction  
• licensing amendments  
• equipment replacement and 

rework 

- Design maturity before start of construction 
- Early supply chain involvement to integrate requirements  
- Systems engineering and new digital tools  
- Reduce rework: better anticipate the impact of design 
modifications on the rest of the plant 
- Get it right the first time 

Integration 
of new 
technologies 

- Impacts on the construction 
schedule and/or plan due to 
regulatory approval or 
constructability issues 

- Integrate constructability requirements when considering new 
technologies 
- Use proven technologies unless a case can be made for the risks 
vs. benefits of a new technology 
- Early supply chain involvement 

Nuclear 
quality 
assurance 
standards 

- Challenges for the supply chain to 
meet nuclear quality assurance 
standards (including 
verification/validation) leading to 
extensive rework 

- Near term: oversight during construction and consolidation of 
the nuclear supply chain  
- Long term: innovative reactors with simpler nuclear heat supply 
systems to simplify the safety case and associated quality 
assurance processes 

Organisational 
risks 

Project 
management  

- Poor planning/scope definition and 
division 
- Inefficient resource allocation 
- Inefficient oversight and low 
reactivity to change during 
construction 
- Costs overruns and results non-
consistent with specifications 

- Proactive early supply chain engagement  
- Delegate authority to project manager for faster on-site 
decision-making  
- Procurement strategy incentives 
- Incentives to increase workforce productivity and encourage 
on-time completion  
- Develop a process to encourage adaptability to specification 
changes 
 - New digital tools: use PLM to improve traceability and 
knowledge management of requirements and modifications 

Supply chain 
capabilities 

- Lack of manufacturing 
expertise/knowledge in critical areas 
- Lack of manufacturing capabilities 
for large components, leading to 
bottlenecks 

- Long-term nuclear new-build perspective to support supply 
chain mobilisation 
- Supply chain co-ordination with vendors at the international 
level to prevent bottlenecks  
- Comprehensive knowledge management strategy 

Policy 
framework 
risks 

Political 
support 

- Uncertainties regarding the 
government’s position on nuclear: 
• politicisation of the nuclear 

agenda  
• change of government policy 

- Establish and maintain broad national and local political 
consensus on the role of nuclear power 
- Political leadership to absorb residual risks 
- Legal and contractual cover for political risks 

Licensing 
framework 

- Unpredictable licensing/regulatory 
framework 
- Unstable licensing/regulatory 
framework 

- Outcome-focused dialogue between vendor and regulator to 
ensure proper interpretation of requirements  
- Regulator awareness of cost implications for industry and 
regulator to find best approaches to meet required safety 
objectives 

Financing  

- Unexpected changes in financial 
conditions (interest rates, taxes, 
exchange rates) 
- Insurability of nuclear liabilities 
according to regime 
- Unavailability of funding 

- Allocation of technological, organisational and governance risks 
to those best equipped to mitigate them 
- Legal framework for liabilities 
- Contract strategy aligned with financier requirements 
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Reviewing risk mitigation priorities emphasises that near-term technical and 
organisational construction risks decrease significantly when standardised reactors are built in 
standardised series using a proven design and supply chain; policy framework risks are also 
likely to be reduced. However – as the next section highlights – these risks are only partially 
owned by the industry, with the government playing a central role in their mitigation, especially 
through providing political support and long-term energy policy and financing frameworks. 

6.2.2 Allocating construction risks among stakeholders 

The general principle for efficiently allocating project risks is to allocate them as much as 
possible to the stakeholders best placed to mitigate them. The various construction risks are 
typically allocated to two types of stakeholders: i) the risk owners that have primary risk 
mitigation responsibility; and ii) other stakeholders of key importance for effective mitigation 
(Table 6). 

Table 6: Typical stakeholder allocation of key construction risks 

Risk categories 

Risk stakeholders 

Industry Other stakeholders 
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Technological 

Design x x x      

Integration of new technologies  x x x     

Nuclear quality assurance standards x x x x   x  

Organisational 
Project management x x x      

Supply chain capabilities  x x x x    

Policy 
framework 

Political support x    x x   

Licensing framework x    x x x  

Financing x    x   x 

Notes: x = primary risk owner; x = other key risk mitigation stakeholders. 

For most of the categories, risk allocation is reflected in several complementary contractual 
arrangements (IAEA, 2017): 

• Ownership arrangements: The ownership structure of the future NPP is of critical 
importance, as it determines the commercial and contractual arrangements of the 
investment decision. For example, under a state-owned model the government directly 
finances the project, meaning that it will explicitly or implicitly carry a large share of the 
project’s construction risks. 

• Procurement arrangements: Under fixed-cost contracting, risks related to supply chain 
capabilities tend to be allocated at the level of the supply chain. As highlighted in the 
discussion on recent FOAK projects in Chapter 3, issues may also arise when contracts 
are incomplete and can trigger a lack of risk allocation certainty. This can lead to 
litigations, resulting in additional costs and delays.  
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• Financial arrangements: Certain “pure” financial risks, such as exchange-rate variation, 
can be addressed through financial instruments applied at the level of international 
financial markets. These includes financial products to mitigate changes in commodity 
prices or the foreign exchange rates.  

In addition, it is noteworthy that technological and organisational risks tend to be owned 
by different stakeholders than policy framework-related risks. 

Technology and organisational risks should generally be allocated within the nuclear 
industry, which includes the plant owner, the vendor, the project team and the supply chain as 
a whole. However, outcomes may often not be determined by a single company but by a 
concerted effort across the industry. For example, project management-related risks may 
primarily be the responsibility of the project team, but the interconnectedness of these activities 
means that the actions of the rest of the industry also affect the project. In addition, allocating 
part of these risks to the rest of the industry through incentive contracting can further support 
the concerted mitigation efforts needed. As highlighted in Chapter 3, incentives must be 
designed such that each contractor, and potentially each subcontractor, does not assume large 
risk margins, as this would raise overall costs. 

Risks related to the policy framework will tend to be owned by the plant owner but will 
often be shared with the government. Again, this may vary from project to project: for instance, 
in the Hinkley Point C (HPC), specific contractual clauses were introduced in case policy changes 
affected the contract-for-difference mechanism. More generally, governments can support 
nuclear project financing through direct equity stakes, loans or loan guarantees. Similarly, 
licensing framework-related risks remain primarily with the industry (the plant owner or 
vendor), but – as highlighted in Chapter 4 – also benefit from co-ordinated efforts with the 
regulatory authority as well as the government to set up a framework that provides sufficient 
predictability and stability.  

In parallel, governments should also be involved in market risk mitigation, particularly in 
liberalised electricity markets, to support long-term price signals. 

Hence, beyond the specificities of each nuclear project, the efficient allocation and mitigation 
of policy-related risks generally requires close co-ordination between industry and the state. 

6.3  Nuclear new-build financing frameworks  

6.3.1 The specifics of financing nuclear projects 

As highlighted in the previous section, risk identification and assessment underpins the 
financing framework. This mainly involves construction risks, but must also include risks once 
the plant is in operation as well as long-term liabilities.  

Nuclear new-build projects are similar to other large infrastructure projects in that the scale, 
complexity and importance of political factors and social acceptance can significantly impact 
financing decisions. Nevertheless, nuclear projects also have a number of specific features that 
can reinforce these challenges (Pehuet Lucet, 2015). 

First, private financial institutions such as equity funds have a limited credit time horizon 
(Offer, 2018), as they remain reluctant to invest in long-lived assets because policy uncertainty 
increases significantly beyond 10-15 years, rapidly raising risk premiums. In addition, new 
banking regulations were introduced following the 2008 financial crisis, requiring that banks 
improve their solvency ratios to comply with Basel-III regulations. These rules indirectly affect 
bank funding availability for long-lived assets such as nuclear projects, particularly because 
they are now required to put aside a percentage of equity as soon as they commit to lend money. 
Because these commitments prevent them from entering into other engagements during the 
tendering period, banks are less inclined today to finance long-term capital-intensive projects 
such as new NPPs.  
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Second, nuclear projects must comply with specific regulatory frameworks for safety and 
non-proliferation across the project lifecycle. This includes several layers of national and 
international norms and rules, such as IAEA guidelines, international treaties and conventions, 
and industry standards. 

Third, in addition to general risk reviews, specific requirements have been added in the past 
two decades regarding environmental and social issues. Managing environmental and social 
risks has become a stringent obligation. The International Finance Corporation (IFC) 
Sustainability Framework and the Equator Principles (EPs) framework set the standards and 
references for addressing environmental and social risks in infrastructure projects.  

All nuclear projects financed through international financial institutions are now governed 
by the EPs. This requires that they perform environmental and social-specific risk assessments, 
formulate action plans and report according to the EPs guidelines, through their lead bank.  

6.3.2 Ownership structures 

As explained above, the ownership structure of a nuclear new-build project is central to the 
series of contractual arrangements that underpin risk allocation and drive financing decisions. 
Three broad models are traditionally considered: 

• Sovereign model: The state funds the project, either directly through the state budget or 
via public borrowing. This model implies that taxpayers carry the project risks unless 
they are explicitly transferred to consumers. Countries with low sovereign risk will be 
able to provide advantageous financial conditions, including for international projects, 
as projects can benefit from the state’s credit rating. 

• (Private) corporate model: Utilities with strong balance sheets can finance large projects 
by raising equity and borrowing money (debt); creditors may claim the loan against the 
company’s overall assets. While the advantage of this financing model is its simplicity, 
it is also expensive and is accessible only to a handful of large corporations. 

• Project-finance model: Project investment is financed through a combination of debt and 
equity as in the corporate-based model, but a project company is created to establish a 
legal separation from the sponsors’ other assets. Hence, lenders have limited recourse 
beyond the revenues and/or assets of the project. As the debt remains in the project 
company, it does not appear on the investor’s balance sheet. 

In practice, these approaches are neither definitive nor exclusive. Ownership structures 
include hybrid formats that combine the attributes of the different approaches and/or 
complement them with specific support mechanisms that further shift risk to a specific 
stakeholder. The choice of structure is based largely on the project’s economic environment, 
with the degree of electricity market unbundling and liberalisation particularly affecting 
interest in developing project finance. Similarly, competition rules may hamper the ability of 
the state to directly own and finance a nuclear project under a sovereign structure, at least 
without counterparties. Finally, interest in shifting risk from the investors to other parties can 
also be a strong determinant of project financing.  

Table 7 summarises the financing models as well as market and construction risk allocation 
for selected Gen-III nuclear projects, revealing a number of important findings. 

First, in recent years corporate finance has been implemented only for large (monopolistic) 
nuclear utilities in countries such as France and Korea.63 In the rest of the world, project finance 
is the dominant approach. A notable exception is Finland, where the Olkiluoto 3 project was 
financed through a hybrid co-operative model (the Mankala model) with a pool of energy-
intensive industries.  

  

 
63. This also applies to Russia, which is not represented in Table 7. 
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Second, almost all nuclear new-build projects require some mechanisms – either 
contractual or regulatory – to allocate market risks to the final consumers. For instance, recent 
projects in the United States are eligible for a nuclear production tax credit from the federal 
government as part of the 2005 Energy Policy Act, effectively transferring market risks to 
taxpayers. Flamanville 3 is the only project financed without the explicit transfer of risks to 
consumers or taxpayers. 

Third, there is more variability in the allocation of construction risks. Utilities, developers 
and vendors have accepted to carry part – and sometimes all – of the construction risks for a 
number of projects. Only projects located in countries or states with regulated electricity 
markets have allocated construction risks to final consumers64. In addition, when construction 
risks have been allocated to the industry, this has been driven by a range of considerations 
beyond the scope of the project. Eagerness to benefit from first-mover advantages in the nuclear 
new-build market was a particularly important stimulus for several projects prior to the 
Fukushima Daiichi nuclear accident.  

Table 7: Financing structures and market and construction risk  
allocation for recent nuclear new-build projects 

 Status FOAK 

Structure of 
financing 

Allocation of 
market risks 

Allocation of 
construction 

risks 

Debt 
guarantee 
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Olkiluoto 3 Under construction Yes   x O    O C French ECA 

Flamanville 3 Under construction Yes x     O  O C None 

Taishan 1&2 In operation Yes  x  R   R*   None 

Vogtle 3&4 Under construction Yes  x  R R  R  C US federal 
guarantee 

VC Summer 
2&3 

Cancelled during 
construction 

Yes  x  R R  R  C US federal 
guarantee 

South Texas 
3&4 

Cancelled before 
construction start Yes  x  C    O C None 

Hinkley Point C Under construction Yes  x  C    O  UK 
government 

Wylfa Newydd Suspended before 
construction start 

Yes  x  C    O  Japanese ECA 

Akkuyu 1&2 Under construction No  x  C    C** None 

Shin Kori 3&4 In operation Yes x   R   R   None 

Barakah 1-4 Under construction No  x  C     C Korean ECA 

* Set after commissioning. ** Build-own-operate (BOO) model.  

Notes: O = Ownership; C = Contract; R = Regulation; ECA = Export credit agency. 

 
64. In practice, national or state power sector regulators may decide that some costs are not deemed 

reasonable and prevent the utility from passing these costs on to the final consumer. This is typically 
the case for US states with regulated power sectors. In addition, some residual construction risks – 
typically in case of bankruptcy – can also be explicitly borne by taxpayers through loan guarantee 
schemes. This has applied to projects in regulated markets but also in the United Kingdom. 
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Today, the allocation of construction risks to industry participants is at the root of the high 
risk premium expected by private investors, and therefore of the cost of capital. This is best 
illustrated by the HPC project, for which the WACC was estimated at around 9% – well above 
the 6% return required by the UK government for public infrastructure projects (NAO, 2018). 

More generally, Figure 39 illustrates LCOE sensitivity to a doubling of overnight construction 
costs (OCC) for different costs of capital, from a reference point of USD 4 500/kWe to 
USD 9 000/kWe.65 Similar to the direct impact of the cost of capital on the LCOE (presented in 
detailed in Figure 37), most of the cost increase originates from the indirect rise in financial cost 
that – even at a relatively low 3% cost of capital – represents USD 15.6/MWh, or 57% of the cost 
increase. For a cost of capital of 9%, the additional financial cost rises sharply to USD 104/MWh, 
which represents 90% of the cost increase.  

In other words, the effect of a construction cost overrun on the LCOE is dominated by an 
indirect impact on financial costs, especially for relatively high costs of capital. From a public 
policy perspective, it would be of considerable social benefit for the government to allocate part 
of the construction risk to other parties, in particular consumers and/or taxpayers.  

Figure 39: LCOE sensitivity to the cost of capital and overnight construction costs 

Cost of capital = 0% Cost of capital = 3% 

  

Cost of capital = 6% Cost of capital = 9% 

  

 
65. An OCC of USD 9 000/kWe is in line with the highest ex-post OCC for recent FOAK projects in OECD 

countries (see Table 1). 
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6.3.3  Government financial support 

From the outset, government commitment and political consensus to incorporate nuclear in a 
long-term energy strategy is a prerequisite for any nuclear new-build project. Government 
involvement will also be central to establish an effective regulatory framework for licensing of 
the reactor, and to secure social licence to operate from the society. 

A core goal of government support is therefore to create conditions conducive to successful 
industry performance. This builds on the standard principles of sound public governance for 
public-private partnerships to establish a framework that continues to incentivise cost 
reductions and limits the risk of cost overruns.66  

In addition, considering the various ownership structures, a government can support 
financing directly or indirectly. Government support is primarily motivated by positive nuclear 
power externalities and electricity market failures, as well as broader macroeconomic 
considerations. 

First, the positive externalities of nuclear energy require that government intervention be 
adequately valued67. For the energy sector, this includes the contribution of nuclear power to 
energy security (NEA, 2011), energy diversification, and climate change mitigation (IEA, 2016). 
Furthermore, nuclear programmes can create macroeconomic benefits for the economy as a 
whole (NEA, 2018), particularly in terms of industrial development, research and development 
(R&D) spillovers, and the high level of training and expertise of its workforce. Given the nature 
and diversity of these positive externalities, the government is often best placed to properly 
value and internalise these benefits. 

Second, the willingness of OECD countries to liberalise electricity markets during the 1990s 
represented a shift from the normal regulated environment, in which tariffs are calculated such 
that investors and utilities recover their costs, including financing. Nuclear energy, along with 
other low-carbon energies such as hydropower, wind and solar photovoltaic, is a technology 
whose cost structure is dominated by investments during construction. In the absence of 
specific incentive policies, these energy production methods are especially exposed to market 
risks, which raises the cost of financing because private investors require higher risk premiums 
(Rothwell, 2006). The strong correlation among electricity, gas and CO2 prices further implies 
that, compared with combined-cycle gas turbines (CCGTs), NPPs may retain limited option value 
in private investors’ portfolio strategies (Roques et al., 2006).  

Third, electricity markets can be subject to specific market failures that hinder investments 
in long-lived assets such as NPPs. Current electricity market structures in OECD countries in 
particular have often been initially designed to organise competition among existing assets, 
rather than to support long-term investments in new capacities (IEA, 2016). Markets may 
therefore fail to deliver the long-term price signals needed to match the lifetime of nuclear 
reactors. 

Fourth, the current macroeconomic environment, with interest rates persistently low in 
many OECD countries, is dramatically changing the impact government support schemes can 
have on the cost of capital. The volume of global private equity has been increasing rapidly in 
the past decade, exceeding private investment and resulting in a lower cost of equity. However, 
despite the overall excess of private equity, investors continue to require relatively high risk 
premiums for investments in infrastructure with time horizons beyond 10-15 years (Newbery 

 
66. See the OECD’s Principles for Public Governance of Public-Private Partnerships: www.oecd.org/gov/ 

budgeting/oecd-principles-for-public-governance-of-public-private-partnerships.htm. 

67. From a more theoretical perspective, the environmental cost-benefit literature examines the normative 
social discount rate (also referred to as social time preference rate) to assign value to climate change 
mitigation action. While estimates of the social discount rate continue to be debated, the typical range 
is 1.4% (Stern Review) to 3/3.5% (W. Nordhaus). For instance, the UK Green Book recommends a social 
discount rate of 1.5-3.5% in real terms (for risk-to-life values) when appraising infrastructure projects. 
This is consistent with the 6% nominal discount rate used in the UK National Audit Office (NAO, 2018 
review of Hinkley Point C, assuming 2.5% inflation: https://assets.publishing.service.gov.uk/ 
government/uploads/system/uploads/attachment_data/file/685903/The_Green_Book.pdf. 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/685903/The_Green_Book.pdf
http://www.oecd.org/gov/budgeting/oecd-principles-for-public-governance-of-public-private-partnerships.htm
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et al., 2019). As part of post-COVID-19 economic recovery policies, there is therefore strong 
macroeconomic rationale for government policy intervention to steer private capital towards 
infrastructure assets that would contribute to long-term economic growth.  

In this evolving context, governments can encourage better financing conditions through a 
number of policy support schemes: 

• direct government financial support; 

• indirect government support through long-term power purchase agreements (PPAs); 

• indirect government support through regulated models (e.g. regulated asset base [RAB]). 

Direct and indirect financial support  

Government support for financing can first be provided as part of the ownership structure 
through an equity stake in the project or public loans. Considering new NPPs as strategic 
infrastructure projects means that governments will expect a lower rate of return than the 
private sector, resulting in a lower cost of capital. This is especially the case in today’s 
international financial environment, with macroeconomic shifts having led to historically low 
– and sometimes negative – borrowing rates for governments.  

Additional support from public entities, particularly from ECAs in the vendor’s country in 
the case of an international projects, has proven successful for several projects, including the 
Angra 3 plant in Brazil, Qinshan I & II in China, and Paks II in Hungary. 

ECAs are traditionally national financial organisations set up to promote national exports 
through trade financing for domestic companies. Their core activity is therefore to provide loan 
guarantees and insurance, as well as direct loans for overseas projects. In effect, ECAs play a 
central role in covering political risks, but also contractual risks. In OECD countries, export 
credits follow specific guidelines (OECD, 2018) that allow ECAs to support up to 85% of the 
export’s contract value, including third-country supply but excluding local costs, with 
additional specific guidelines for repayment terms and minimal applicable interest rates. 

Figure 40: Direct and indirect government support approaches 

 

 
Finally, other indirect financial support can also be envisaged to improve project 

profitability or reduce investors’ risk exposure, such as production tax credits, risk insurance 
and loan guarantees. Such schemes have typically been used in recent projects such as Vogtle 
in the United States and HPC in the United Kingdom. 
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Indirect government support through long-term power purchase agreements 

To mitigate market-related risks for investors and provide long-term price signals, PPAs can be 
established to support the revenue stream. PPAs are often part of corporate and project finance 
ownership structures and can be contracted with a range of public and private parties. 

For instance, the Mankala model has been used for the Olkiluoto 3 project. In Finland, a 
Mankala company is a limited liability company that sells the produced electricity and heat to 
shareholders at cost, proportionate to their holdings in the company. Mankala shareholders are 
usually energy-intensive users (industries and municipal utilities) seeking long-term energy 
cost stability, and they reduce their individual risk exposure by investing in projects together.  

Other corporate PPA models could also be considered, although none have been applied to 
recent nuclear new-build projects. For example, in France a consortium of energy-intensive 
users and banks formed a limited liability company (Exeltium) in the early 2000s to finance 
upfront investments for the long-term operation of the nuclear fleet (Pehuet Lucet, 2015). 

Figure 41: PPA under the Mankala model 

 

When investment opportunities for energy-intensive users are limited, the government can 
take action by establishing specific contracts. One option widely used now for renewable energy 
projects is the contract for difference (CfD). A CfD is as a swap between an agreed fixed price 
and the wholesale market: the difference between the agreed price in the CfD and the market 
reference price is paid to the project developer (if positive) or paid by the project developer back 
into the system (if negative). This approach has been successfully used to address market risks 
for the HPC project in the United Kingdom. 

It is important to stress, however, that the CfD model addresses electricity market risks only, 
while project developers retain the construction risks. To lower this hurdle, governments can 
complement the CfD model with state guarantees, as has been done for HPC. Consequently, 
HPC’s WACC is estimated at 9% – higher than the 6% return required by the UK government for 
public infrastructure projects (NAO, 2018). With a 9% WACC, HPC’s strike price is 50% higher 
than it would be in a scenario with direct or indirect government financing, which would reduce 
the WACC to 6%. 

In addition, the role of electricity market reforms to support long-term price signals should 
not be neglected. Long-term CO2 price trajectories can especially complement CfDs and PPAs to 
reduce the expected gap with the wholesale electricity price and strengthen the market 
framework. 

Regulated asset base 

The government can also mitigate both construction and market-related risks by considering a 
nuclear project as a regulated asset. In the United States, several states have maintained 
vertically integrated utilities in which the regulator can decide whether to integrate nuclear 
projects as part of the utility’s rate base. 
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Among several rate-of-return regulatory approaches, the RAB model is receiving renewed 
scrutiny for nuclear new-build projects.68 It has been widely used in several OECD countries – 
the United Kingdom in particular – to support and regulate long-lived capital-intensive 
investments in infrastructure assets. Under the RAB model, an economic regulator sets the end-
user price. In some cases the project owner (often a utility) is allowed to adjust the end-user bill 
during construction to secure a reasonable rate of return. Payments can also be received upfront, 
reducing interest during construction (IDC). 

Figure 42: Regulated asset base model 

 

The RAB model can be effective in mitigating construction and market risks by ensuring a 
return regardless of market conditions. This approach can also designed to avoid some of the 
drawbacks of standard rate-of-return regulation. Periodical price reviews create an incentive for 
costs savings and avoid over-investments. Hence, the RAB model aims to optimise risk allocation 
by balancing the benefits of passing some of the risk of the cost of capital on to consumers with 
the need for sufficient incentives for the industry to manage and reduce these risks. 

The success of this approach will depend on a strong regulatory framework and consistent 
political leadership to overcome challenges during construction. In particular, the (economic) 
regulator will need to develop sufficient understanding of the nuclear project to review 
allowable and disallowable costs. This will be especially important to give the stakeholders 
involved in project financing confidence in the regulator’s decision-making process. Some 
historical projects in the United States, including the recently cancelled VC Summer project in 
South Carolina, demonstrate that other rate-of-return regulatory approaches do not always 
provide sufficient incentives for risk mitigation, in particular for FOAK projects. 

Conversely, a key benefit of the RAB model is that transferring construction and market 
risks to consumers significantly reduces the risk premium expected by investors, especially 
infrastructure funds and potentially pension funds seeking long-lived assets. In addition, 
introducing a rate base from the moment a project is approved avoids interest during 
construction, which further raises project profitability and reduces final consumer costs. 

Recent large-scale infrastructure projects illustrate how the RAB model can be successfully 
implemented to leverage private financing with a low WACC. For example, it is estimated that 
the Thames Tideway Tunnel in London resulted in a real WACC of 2.5% (Newbery et al., 2019). 
Important to the success of this project’s financing was the provision that part of the costs 
overruns would be covered by ratepayers (up to 30%), significantly reducing the level of 
construction risk for investors while maintaining strong incentives for the project developer to 
mitigate those risks.  

 
68. For instance, see the 2019 UK inquiry regarding the applicability of the RAB model for future projects: 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/82
5119/rab-model-for-nuclear-consultation.pdf. 
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It is expected that applying a similar RAB arrangement to a nuclear project in the United 
Kingdom under a CfD approach would reduce the real WACC from 8% to as low as 3.5% (Newbery 
et al., 2019). Given the importance of the cost of capital on the LCOE of nuclear power, this 
reduction in the WACC could significantly reduce the levelised cost by about 50%.69 

6.3.4 Implications for future projects 

Depending on the national context and project characteristics, several financial models can be 
considered for future nuclear new-build projects wherein governments actively help mitigate 
risks and therefore support financing. This is especially possible given the historically low 
interest rates and relatively abundant private capital in OECD countries that create a unique 
opportunity to lower the cost of capital if the right policy frameworks are in place to address 
construction and market risks. 

Governments should also consider taking a direct equity stake in new nuclear construction 
projects, as the public sector has the lowest cost of capital in most OECD countries. Doing so 
would also enable governments to be more proactively involved in project governance, 
including in activating its social benefits. It is particularly important for countries considering 
large nuclear programmes to be aware that as the risk level falls significantly after construction, 
additional sources of funding should become available, ultimately reducing the government’s 
overall financial burden. 

In addition, the role of government in financing is particularly important for countries 
restarting their nuclear programmes. Government financial support should, however, be viewed 
as transitional, as industrial maturity will drive down both risks and costs, reducing financial 
support needs in the long term (Figure 43). 

Figure 43: Positive cost-risk loop for nuclear new-build projects 

 

As the various policy support schemes highlighted above are not exclusive, combining them 
can raise the effectiveness of government action by reinforcing certainty in the government’s 
commitment to new NPPs, further mitigating private investor risks. This is essential to attract 
new sources of financing as part of public-private partnerships, especially for financial 
institutions – such as pension funds – that may not have specific expertise in infrastructure 
assets and are seeking long-term investments that match the time horizons of their liabilities. 

Finally, beyond measures aimed specifically at supporting financing, electricity market 
reforms should also not be neglected, as they can be of considerable help in providing long-term 
price signals, such as for CO2 price trajectories. Similarly, policies could be designed to 
incentivise corporate PPAs for large energy-intensive users, as has been done in Finland with 
the Mankala model.  

 
69. Reducing the real WACC from 8% to 3.5% under the general hypotheses of a GBP 5 000/kWe OCC, a 10-

year construction lead time and 91% availability factor would translate into an LCOE reduction of 
GBP 100/MWh to GBP 53/MWh (Newbery et al., 2019). 
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7. Conclusions and policy recommendations 

 It is time for action if countries around the world are to meet their policy goals for 
environmental and energy security. Building new nuclear plants alongside variable renewable 
energy (from wind and solar photovoltaic) is a path to decarbonisation of the power sector. As 
the 2019 Nuclear Energy Agency (NEA) report The Costs of Decarbonisation explains, nuclear power 
will become increasingly attractive owing to its attributes as a low-carbon, dispatchable and 
flexible technology. 

Nevertheless, policy makers are rightly concerned about the cost of nuclear new-build 
projects. In many Organisation for Economic Co-operation and Development (OECD) countries, 
the construction delays and cost overruns experienced by first-of-a-kind (FOAK) nuclear 
projects are serious industrial and policy challenges that need to be addressed for subsequent 
installations. These delays and cost overruns resulted largely from uncertain political contexts 
and a lack of design maturity that is somewhat inherent to FOAK projects. Overruns consisted 
primarily of indirect costs, including the nonrecurrent costs associated with deploying a new 
generation of reactors. Nevertheless, they have undeniably undermined stakeholder and public 
confidence in the nuclear sector’s capacity to successfully deliver new-build projects. 

Against this backdrop, this study reviewed the drivers of nuclear construction costs over time 
and across countries. The conclusion is that the nuclear industry should be well positioned to 
learn lessons from the recent completion of FOAK Gen-III reactors and could deliver additional 
construction cost reductions in the 2020s. While these cost reduction opportunities are at the 
technical and organisational levels, their effectiveness requires a robust governance framework 
and greater government involvement. 

Transitioning from FOAK to rapidly deliver more competitive Gen-III reactors 

Several OECD and non-OECD countries have already progressed beyond Gen-III FOAK projects. 
China and Russia in particular are now both able to focus on continuously improving nuclear 
industry performance, in a similar manner to other industries. Historical evidence from France, 
Japan and Korea confirm that with serial construction and industrial standardisation, new 
nuclear power plants can be delivered at a competitive cost. More importantly, these countries’ 
experiences demonstrate that FOAK project flaws can be corrected in subsequent projects. Even 
countries with relatively small nuclear programmes (e.g. the United Arab Emirates [UAE]) can 
achieve better industrial performance when a reference plant has been established and a well-
integrated and qualified supply chain can be mobilised. 

In this regard, the successful delivery of the next new nuclear construction projects in 
western OECD countries will be critical to rebuilding public confidence in those countries. At 
the policy level, design maturity and regulatory stability should be prioritised to support near-
term cost reductions. 

In the near term (early 2020s), the most effective way to achieve construction cost 
reductions in countries with a significant need for fleet renewal is to develop a nuclear 
programme that implements serial construction with multi-unit projects on the same site, 
and/or serial construction of the same reactor design on several sites. Costs would be reduced 
significantly through:  

• Reducing indirect construction costs related to design documentation, safety approvals 
associated with the design, and supplier qualification. For multi-unit projects on the 
same site, additional cost reductions would result from several units sharing 
nonrecurring, site-specific, regulatory, planning, and supporting infrastructure costs.  
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• Mobilising the nuclear supply chain as experience is transferred from one project to 
another, particularly for construction methods that can be easily repeated once validated. 
As construction durations shorten, financial costs (i.e. interest during construction) also 
fall. 

 

Key policy recommendations  

1. Capitalise on lessons learnt from recent Gen-III construction projects. With the construction 
of several FOAK Gen-III nuclear reactors completed, the nuclear industry and its supply chain 
have in large part redeveloped their capabilities in several OECD countries. By building on 
these reactor designs, governments have a window of opportunity to realise cost reductions 
in the early 2020s through timely new-build decisions. Delaying these decisions will prevent 
the sustainment of capabilities and therefore raise near-term project construction costs. 

2. Prioritise design maturity and regulatory stability. Designing policies to support nuclear 
construction is critical to ensure that new-build projects start in the right conditions. Policy 
support mechanisms should include requirements for design maturity and, more specifically, 
construction readiness, and should ensure that the regulatory framework for nuclear safety 
remains stable and predictable throughout construction. 

3. Consider committing to a standardised nuclear programme. For countries considering 
multiple new-build projects, commitment to a standardised nuclear programme to capitalise 
on the series effect, multi-unit construction and continuous design and process optimisation 
is the most promising avenue to effectuate cost reductions. 

 

Cost reduction opportunities are available at several levels 

Building on lessons learnt from recent projects, a range of cost reduction opportunities for 
future nuclear construction (up to 2030) is emerging. In fact, a number of industry initiatives 
focused primarily on the interplay between incremental design optimisation of Gen-III reactors 
(particularly simplification and standardisation) and the integration of cross-cutting 
technologies and innovative enabling and construction processes (e.g. digital transformation, 
modular construction) are being launched. In many cases, these innovations have already been 
implemented successfully in other industries.  

New co-operative interactions among various stakeholders, particularly regulatory bodies, 
are also being introduced. At the regulatory level, recent country experiences demonstrate that 
regulatory interactions can be enhanced without jeopardising safety objectives or regulatory 
independence.  

Finally, the nuclear industry is also developing a number of longer-term (post-2030) 
opportunities that hold further cost reduction potential, including the harmonisation of 
licensing regimes, codes and standards; and innovative designs such as small modular reactors 
(SMRs) and Gen-IV reactors.  

Policy makers can support these industry initiatives in a number of ways, with measures to 
co-ordinate energy and industry policy and to support research and development (R&D), 
innovation and skill development. For countries with a large enough nuclear new-build market, 
implementing a standardised nuclear programme is the most effective way to mobilise the 
various cost reduction drivers. 
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Key policy recommendations 

4. Enable and sustain supply chain development and industrial performance. Industrial and 
energy strategies for new nuclear plants need to be carefully articulated. For instance, 
investment in supply chain capabilities requires assurance of long-term energy policy 
commitment to new nuclear construction to adopt the latest technical and organisational 
advances under the best conditions. New-build ambitions needs to be adjusted to integrate 
supply chain constraints and ensure continuous activity to enable and sustain development.  

5. Foster innovation, talent development and collaboration at all levels. Governments can 
support cost reduction opportunities arising from innovative nuclear technologies (i.e. SMRs 
and Gen-IV reactors) by ensuring the timely development of demonstration projects and the 
licensing framework required to foster market deployment. Supporting talent development is 
also essential given the high level of technological expertise needed in nuclear power. National 
and international collaboration remains a key vector to achieve these objectives. 

 

The governance framework is essential to support competitive new nuclear construction 

The governance of nuclear new-build projects is critical to effectively allocate and mitigate 
construction and market-related risks. Nuclear projects are not different from other sectors and 
the standard economic principle of allocating each risk to the party most capable of managing 
it should be followed. In practical terms, this means that the industry (i.e. vendor, owner or 
supply chain as a whole) will often be best placed to manage technological and organisational 
risks, whereas risks related to the market and financing framework will warrant some degree 
of government intervention.  

The impact of the cost of capital on the levelised cost of nuclear power and the positive 
externalities associated with nuclear power provide particularly clear rationale for direct or 
indirect government financial support in countries pursuing nuclear energy generation. This is 
especially necessary at the beginning of a nuclear programme to minimise risk perception. 

Furthermore, as with other large-scale infrastructure projects, government involvement 
should extend well beyond specific policy support measures. Given the long-lasting and 
structural impacts of a nuclear programme on a country’s economy and electricity system, 
governments must consider nuclear plants as national infrastructure projects of strategic 
importance. This means governments are responsible not only for project leadership but for 
uniting the various stakeholders, including the public at large.  

 
Key policy recommendations 

6. Support robust and predictable market and financing frameworks. Nuclear new-build projects 
require long-term government planning involving both specific commitments and market 
regulations. In addition, financial support is currently essential in western OECD countries – at 
least as a transitional measure – to deliver cost-competitive new nuclear construction. 

7. Encourage concerted stakeholder efforts. Governments should create an environment that 
fosters social contract with industry and society to reduce nuclear construction costs. Recent 
national initiatives such as the Nuclear Sector Deal in the United Kingdom provide clear 
evidence of how such frameworks can be developed and implemented. 

8. Tailor government involvement to programme needs. The enabling role of governments will 
differ depending on the nature of the programme. Whereas government financial support in 
countries considering a fleet programme can be expected to decrease gradually as the industry 
reaches maturity and the perceived risk level falls, countries restarting a nuclear programme 
or considering only a single-plant project are likely to require further government support. 
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Today, with the completion of First-of-a-Kind Gen-III nuclear reactors, the nuclear sector is at a 
critical juncture. These reactors have led in several parts of the world to delays and construction 
costs overruns that have challenged the competitiveness of nuclear power and are driving the 
risk perception of future projects. Against this background, a review of historical and recent 
lessons learnt from nuclear and non-nuclear project offers ample evidence that nuclear new 
build can be delivered cost and time-effectively. 

This study assesses the policy and governance frameworks needed to drive positive learning 
and continuous industrial performance for nuclear new build. The study also explores the risk 
allocation and mitigation priorities needed to define adequate financing schemes for these 
projects. In the longer-term, it identifies cost reduction opportunities associated with the 
harmonisation of code and standards and licensing regimes and new innovative designs (i.e. 
small modular reactors and advanced reactors). 
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