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Abstract 

Policy action to avoid the impending societal costs of climate change is particularly 

warranted in transport sector, which is responsible for 30% of greenhouse gas emissions in 

OECD countries. To design appropriate interventions in this sector, policy makers should 

account for the recent emergence of shared mobility services in urban areas and their 

potential advantages in terms of emissions mitigation. These services offer a similar degree 

of flexibility as private car travel, as well as the capacity to transport many passengers 

simultaneously, similar to public transport services. This combination of characteristics 

could render shared mobility as a viable alternative not only to private car use, but also to 

public transport. The degree to which shared mobility constitutes constitute a cost-effective 

alternative to conventional private and public modes of transport, from a social point of 

view, is unknown. Consequently, the environmental impacts of shared mobility should be 

explored before considering how to encourage the adoption of these services.              

This study estimates the impact that the widespread uptake of shared mobility services 

could have on the carbon footprint of urban transport. To this end, it simulates the share of 

each transport mode and aggregate emissions from passenger transport in 247 cities across 

29 OECD countries between 2015 and 2050. The simulations make use of econometric 

estimates obtained from a unique cross-city survey on individual preferences regarding 

transport modes, including shared mobility.    

Once mainstreamed, shared mobility services are found to offer a significant environmental 

benefit. The analysis indicates that they have the potential to eliminate, on average, 6.3% 

of passenger transport emissions. This mitigation potential varies widely across cities and 

depends in large part on current modal splits in cities. The analysis shows that such services 

will not easily thrive in car dependent environments, where the cost of their provision is 

going to be higher and preferences for using shared modes of transport are weaker. Cities 

in which public transport delivers almost all mobility will not see emissions reductions 

from the uptake of shared mobility services either, as in these cases shared mobility is 

expected to reduce public transport ridership. However, almost all of the urban areas 

examined in the analysis fall outside of these polar cases. In the majority of cities, the 

environmental benefits of shared mobility uptake are positive and, in many cases, 

considerable.   

These findings have a number of policy implications. In cities that stand to benefit from 

the uptake of shared mobility services, these results may call for a relaxation of the various 

barriers that hamper this uptake. This holds especially in cases in which their removal does 

not contradict other policy objectives, such as those related to job security and fair 

competition. To this end, the analysis points to several policies that could effectively 

influence the penetration rate of shared mobility services. These include pricing 

instruments that increase the generalised cost of car use, vis-à-vis that of shared mobility. 

Such policies are justified especially in urban areas where neither private car nor public 

transport are the dominant modes of travel. Reducing the relative cost of shared mobility 

is one of the most effective levers. These findings also highlight the limits of shared 

mobility as a strategy for decarbonising urban transport. According to these results, shared 

mobility can play a complementary role in efforts to reach carbon neutrality by 2050.   
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Résumé 

Une action politique visant à éviter les coûts sociétaux imminents du changement climatique est 

particulièrement justifiée dans le secteur des transports, qui est responsable de 30% des émissions 

de gaz à effet de serre dans les pays de l'OCDE. Pour concevoir des interventions appropriées dans 

ce secteur, les décideurs devraient tenir compte de l'émergence récente de services de mobilité 

partagée dans les zones urbaines et de leurs avantages potentiels en termes d'atténuation des 

émissions. Ces services offrent un degré de flexibilité similaire à celui des déplacements en voiture 

privée, ainsi que la capacité de transporter de nombreux passagers simultanément, à l'instar des 

services de transport public. Cette combinaison de caractéristiques pourrait faire de la mobilité 

partagée une alternative viable non seulement à l'utilisation de la voiture privée, mais aussi aux 

transports publics. Le degré auquel la mobilité partagée constitue une alternative rentable aux 

modes de transport privés et publics conventionnels, d'un point de vue social, est inconnu. Par 

conséquent, les impacts environnementaux de la mobilité partagée doivent être explorés avant 

d'envisager comment encourager l'adoption de ces services. 

Cette étude évalue l'impact que l'adoption généralisée des services de mobilité partagée pourrait 

avoir sur l'empreinte carbone des transports urbains. À cette fin, elle simule la part de chaque mode 

de transport et les émissions agrégées du transport de passagers dans 247 villes de 29 pays de 

l'OCDE entre 2015 et 2050. Les simulations utilisent des estimations économétriques obtenues à 

partir d'une enquête interurbaine unique sur les préférences individuelles en matière de modes de 

transport, y compris la mobilité partagée. 

Une fois intégrés, les services de mobilité partagée offrent un avantage environnemental 

significatif. L'analyse indique qu'ils ont le potentiel d'éliminer, en moyenne, 6,3% des émissions 

du transport de passagers. Ce potentiel d'atténuation varie considérablement d'une ville à l'autre et 

dépend en grande partie des répartitions modales actuelles dans les villes. L'analyse montre que 

ces services ne prospéreront pas facilement dans des environnements dépendant de la voiture, où 

le coût de leur fourniture sera plus élevé et les préférences pour l'utilisation de modes de transport 

partagés sont plus faibles. Les villes dans lesquelles les transports publics assurent la quasi-totalité 

de la mobilité ne verront pas non plus de réduction des émissions grâce à l'utilisation de services 

de mobilité partagée, car dans ce cas, la mobilité partagée devrait réduire l’utilisation des transports 

publics. Cependant, presque toutes les zones urbaines examinées dans l'analyse se situent en dehors 

de ces cas polaires. Dans la majorité des villes, les avantages environnementaux de l'adoption de 

la mobilité partagée sont positifs et, dans de nombreux cas, considérables. 

Ces résultats ont un certain nombre d'implications politiques. Dans les villes susceptibles de 

bénéficier de l'adoption de services de mobilité partagés, ces résultats peuvent exiger un 

assouplissement des divers obstacles qui entravent cette adoption. Cela vaut en particulier dans les 

cas où leur suppression ne contredit pas d'autres objectifs politiques, tels que ceux liés à la sécurité 

de l'emploi et à une concurrence loyale. À cette fin, l'analyse met en évidence plusieurs politiques 

qui pourraient effectivement influencer le taux de pénétration des services de mobilité partagée. Il 

s'agit notamment d'instruments de tarification qui augmentent le coût généralisé de l'utilisation de 

la voiture, par rapport à celui de la mobilité partagée. De telles politiques se justifient en particulier 

dans les zones urbaines où ni la voiture privée ni les transports publics ne sont les modes de 

déplacement dominants. La réduction du coût relatif de la mobilité partagée est l'un des leviers les 

plus efficaces. Ces résultats mettent également en évidence les limites de la mobilité partagée en 

tant que stratégie de décarbonation des transports urbains. Selon ces résultats, la mobilité partagée 

peut jouer un rôle complémentaire dans les efforts pour atteindre la neutralité carbone d'ici 2050. 
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1.  Introduction 

The latest scientific evidence suggests that allowing the global average temperature to reach 

1.5 ℃ higher than its pre-industrial level will heighten the risk of extreme weather events 

and threaten human welfare in diverse ways (IPCC, 2018[1]). The most recent analyses 

show that global average temperature has already reached 1.1℃ above pre-industrial levels, 

and that the commitments outlined in the current Nationally Determined Contributions to 

the Paris Agreement will fall short of climate goals.1 Limiting temperature rise to 1.5 ℃ 

will require a fivefold increase in targeted emissions reductions (WMO, 2019[2]), 

necessitating the mobilisation of a large number of policy levers across multiple sectors.  

The transport sector constitutes one of the areas of economic activity in which 

technological change and policy action is most urgently needed to address climate change. 

Transport-related activity accounts for 23% of annual emissions worldwide, and 30% of 

emissions in OECD countries (IEA, 2018[3]). Although OECD countries comprised only 

17% of the world’s population in 2015, they were responsible for an estimated 50% of 

domestically-emitted CO2 emissions from transport that year (ITF, 2019[4]). Moreover, 

while emissions from the industry and energy sectors have begun to decline in recent years, 

emissions from transport have continued to rise despite the implementation of mitigation 

policies and improvements in fuel efficiency (IEA, 2018[3]).  

Policy interventions and technological developments that affect mobility at the urban level 

are more relevant than ever before. Without substantial policy interventions or a major 

green technological disruption, transport-related emissions in urban areas are not expected 

to fall substantially below their current levels in 2050.2 The continued increase in transport 

emissions is due in part to growing populations and rising per capita income, which drive 

demand for travel. The proportion of global population residing in urban areas is expected 

to increase from 54% in 2018 to 68% in 2050 (UN, 2018[5]), a number that rises to 80% for 

OECD countries. Technology- and policy-driven decarbonisation efforts must therefore be 

intensified in urban areas if emissions reductions are to be accelerated in the face of 

increasing travel demand.  

Shared mobility, which can be broadly defined as the common use of a vehicle by multiple 

users, has been recently identified as a way to reduce transport-related emissions, especially 

in urban areas. A wide array of shared mobility services currently offer various types of 

shared mobility to their users. These services differ with respect to the temporal pattern 

under which passengers share a vehicle owned by an individual or company. In many cases, 

these services are provided to a single party, i.e. to an individual or a group of individuals 

that have ex-ante agreed to use the service jointly. For instance, car sharing services 

provide the right to rent a car for a short period of time, possibly a single trip, to a single 

party. Similarly, ride-sourcing services use digital applications to employ drivers using 

personal or company-owned vehicles for taxi type of services to a single party. Despite 

these services enable some type of shared mobility, their long-run impact on transport-

                                                      
1 The currently projected global average temperature rise lies between 2.9℃ and 3.4℃ by 2100 

(WMO, 2019[2]),. 

2 Recent studies indicate that, under a business-as-usual path, the total emissions of urban transport 

in 2050 are expected to be higher in 2050, compared to their levels in 2018 (e.g. OECD, 2019, for a 

city-specific case study and ITF, 2019, for a global level projection). 
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related emissions is potentially limited, and could even be negative. This is because they 

are characterised by low occupancy ratios, i.e. a small number of passenger kilometres are 

served for each vehicle kilometre materialised. 

This study focuses exclusively on the environmental impacts of ride-sharing. These 

services enable the simultaneous use of any type of vehicle during a given trip by multiple 

parties. Each party may be composed by one or more passengers and has a different trip 

origin and destination. The matching of parties to be served by a given vehicle, the pick-up 

and drop-off locations and the route of the vehicle are all variables to be determined by 

algorithms on a real time fashion. Therefore, ride-sharing refers to an algorithm-based 

common use of a given vehicle stock which, in contrast to traditional public transport, does 

not preclude fixed routes and periodicity in the provision of service. Importantly, the 

provided definition does not preclude any assumption about the ownership regime of these 

services, as the underlying operator can be private or public. Throughout the paper, shared 

mobility will therefore be used to refer to ride-sharing with these characteristics. 

High-occupancy ride-sharing is attracting attention as a strategy for reducing overall 

vehicle-kilometres travelled and thus transport-related emissions in urban areas (Fulton, 

2018[6]; Greenblatt and Shaheen, 2015[7]; Santos, 2018[8]). The promising nature of these 

services stems from the fact that they are able to transport more people per vehicle-

kilometre than private cars. Notably, such services can be provided using vehicles with a 

range of capacities, e.g. conventional cars, mini-shuttles, taxi-busses and eventually 

conventional busses. Relative to traditional public transport systems, shared mobility 

services also offer greater flexibility in terms of their scheduling and the extent of their 

physical network. The considerable versatility in terms of capacity, schedule, and 

geographic coverage of these shared mobility systems combines characteristics of 

travelling by car with characteristics of travelling by public transport. In this way, the 

shared mobility services considered in this study can be thought of as a form of versatile, 

on-demand public transport.  

The study estimates the impact of a widespread deployment of ride-sharing services on the 

total carbon emissions of urban transport in the period 2015-2050. To this end, it 

econometrically estimates the preference parameters governing travellers’ choices between 

transport modes, including shared mobility. Using these estimates, it then projects the 

adoption rate of shared mobility services and the impact that their uptake will have on the 

share of car and public transport in the modal split. Finally, it translates changes in the 

modal shares over this period into changes in the resulting greenhouse-gas emissions. This 

exercise is repeated for different sample years, cities and trip types. Across them, various 

trip characteristics that are key to transport mode choice, e.g. travel cost, travel time, are 

allowed to vary. Furthermore, the simulation exercise explicitly accounts for the cross-city 

variation of traffic conditions, the cross-country variation of carbon-intensity of electricity 

generation and the car fleet, as well as their intertemporal evolution.  

The analysis is largely based on two unique data sets. The first one comprises the 

characteristics of approximately 12000 synthetic trips in 247 cities across 29 OECD 

countries. These trips are simulated using actual geographic, transport, population and 

employment data encapsulated in the Global Urban Model developed by the ITF. The 

second dataset contains stated responses from a consumer survey, which was tailored to 

identify the drivers behind the potential adoption of a ride-sharing type of shared mobility 

service and was carried out in Auckland, Dublin and Helsinki. The study also utilises 

secondary data sources that contain current or projected information, such as that for the 

current and future emission intensity of the power generation sector (IEA, 2018[9]).  
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Based on the above methodology, the study provides a comparative analysis of two 

scenarios. In a reference scenario, the current low level of uptake of shared mobility persists 

to 2050. In this scenario, low uptake through 2050 reflects existing technological and 

institutional barriers. A counterfactual scenario simulates the gradual removal of these 

barriers. This simulation isolates the impact of mainstreaming shared mobility services per 

se from other factors that evolve across over time in each scenario, e.g. emission factors.  

The paper exhibits a wide array of findings. Once mainstreamed, shared mobility services 

are found to offer a significant environmental benefit. The analysis reveals that they have 

the potential to eliminate, on average, 6.3% of passenger transport emissions. The 

mitigation capacity of shared mobility services is shown to vary widely across cities and to 

depend largely on the current mode shares in cities. The analysis shows that such services 

are not likely to thrive in car dependent environments, highlighting the fact that their 

successful deployment depends on user willingness to adopt these services. On the other 

hand, cities in which public transport supplies the dominant share of travel, do not stand to 

benefit from such services, as they are expected to reduce public transport ridership, 

implying a net increases in emissions per passenger-kilometre travelled. However, more 

than 95% of urban areas examined in the analysis do not fall into these extreme cases. In 

these cities, the environmental impact of shared mobility services is positive and, in some 

cases, considerable. 

These findings have a number of policy implications. In cities that stand to benefit from 

the uptake of shared mobility services, these results may call for a relaxation of the various 

barriers that hamper their uptake. This holds especially in cases in which such a removal 

does not contradict other policy objectives, in particular those related to job security and 

fair competition. To this end, the analysis points to a number of specific policies that could 

effectively influence the penetration rate of shared mobility services, key among which is 

reducing the relative cost of these services. These policies are justified especially with 

respect to urban areas where public transport is not the dominant mode of travel. Reducing 

the costs of shared mobility services, and increasing the costs of their alternatives, are 

shown to be among the most effective levers, pointing to potential interventions that modify 

these relative costs. 

The findings also indicate, however, the limits of shared mobility as a means to decarbonise 

urban transport. The results suggest that shared mobility services will play a 

complementary, rather than central, role in efforts to reach carbon neutrality by 2050. They 

also underline the urgency of core policies that seek to better align the private cost of private 

car use with its social cost. Many such policies could also serve to increase the uptake of 

shared mobility services, and the successful deployment of the latter could help facilitate a 

shift away from car use. However, more explicit support measures to shared mobility, such 

as subsidies, should be evaluated according to the social costs and benefits they are 

expected to yield.  

The structure of the paper is as follows. Section 2 provides an analytic description of the 

data sources used in the study. Section 3 lays out the complete methodology of the study, 

describing the specification and the properties of the econometric and simulation models 

used in the analysis. Section 4 summarises the findings from the econometric analysis and 

their importance for designing instruments that could encourage the adoption of shared 

mobility services. Section 5 exhibits the simulation results and provides a discussion on 

the potential environmental impact of shared mobility on various cities and countries.  
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2.  Data 

This section describes the data sources employed in the study. The first part of the section 

introduces the survey data used to estimate the effect of transport attributes and socio-

demographic characteristics on an individual’s choice of transport mode. The survey 

contains a choice experiment in which respondents make a series of choices among four 

transport modes: non-motorised modes, public transport, shared mobility or car. 

Respondents are also asked questions about their personal characteristics. The data 

generated from this choice experiment enables the estimation of underlying drivers behind 

the share of each transport mode in the modal split.  

The second part of this section describes the data sources employed in simulating the 

impact of shared mobility uptake on greenhouse gas emissions. This part summarizes the 

synthetic dataset generated using the global urban passenger transport model developed by 

the ITF. This dataset contains plausible simulated trips whose characteristics vary across 

cities and depend on the mode used to make them. Trip attributes (travel costs, times, and 

conditions) also vary with departure times and location, as well as with the type of shared 

mobility proposed. Other key data used in the simulation pertain the projected total travel 

demand in each city, the emission factors of each transport mode and the carbon intensity 

of electricity generation in each country.  

Survey data 

The data used for the estimation of individuals’ utility parameters were gathered through 

surveys conducted in three cities: Auckland, Dublin and Helsinki. The questionnaire 

collected respondents’ stated preferences on transport mode via a choice experiment, along 

with their socio-demographic characteristics. 

Questionnaire design 

Survey respondents first received information regarding the nature of shared mobility 

services. This included information about the effect that shared mobility services could 

have on traffic congestion and air pollution, as well as on overall accessibility and the 

comfort of urban travel. Specific information was also provided on the characteristics of 

the vehicles that would provide hypothetical shared mobility services in the choice 

experiment, namely shared taxis and taxi-busses.   

The hypothetical services provided by the two types of vehicles differ substantially. Shared 

taxis are requested in real time and provide a door-to-door service. Shared taxis make small 

detours to pick up and drop off other passengers. As a result, travel via shared taxi is 

designed to be 25-30% cheaper than travel via their conventional counterparts. Waiting 

times for shared taxis are short, i.e. 5-10 minutes. In contrast to shared taxis, taxi-busses 

are requested 15-30 minutes in advance, have a maximum capacity of 8 to 16 passengers 

and stop at pre-programmed locations that are close (within 400 metres) of riders’ departure 

points and destinations. Taxi-bus services are designed to be around 75% cheaper than 

conventional taxis, and therefore cheaper than shared taxi services.  

The survey also collected information on a number of relevant socio-demographic 

characteristics. Respondents were asked to indicate the proximity of their residence to the 
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city centre, their gender, age, occupation, and their typical use of smartphones, tablets and 

apps. They were also asked to characterise their current mobility habits: the transport mode 

they use, the number of weekly trips and their average trip duration for various trip 

purposes.  

The choice experiment consisted of a sequence of four choices between transport options 

(see Table 2.1). Respondents were asked to choose from among four modes: private car, 

non-motorised transport (i.e. walking or biking), public transport and one of the forms of 

shared mobility described above (i.e. shared taxi or taxi-bus). Each option was described 

in terms of several attributes, e.g. travel time and cost, the value of which varied across 

subsequent rounds of the experiment. This variation generated the heterogeneity in the data 

needed to estimate the choice model described in Section 3 and elucidate the role of each 

attribute on respondents’ utilities. Participants could drop out of the survey at any time, 

resulting in some limited attrition: about 83.6% of the participants completed all four 

rounds of the experiment. To ensure the panel dataset is balanced, the analysis employed 

in this study retains only the observations from subjects who completed all four rounds. 

The set of attributes and their levels can be found in Annex A Table A A.1. 

Table 2.1. Example of a choice set 

Choose the option below that best suits your preferred mode of travel. Compare current transport 

options and shared mobility options. 
Public Transport 

On board time: 40mins 
Fare: NZ$2.5 
Walking time (from/to stop or station): 20 mins 
Waiting time: 20 mins 
Number of transfers: 1 
Mode: Bus 

Shared Mobility 
On board time: 15 mins 
Fare: NZ$8 
Walking to and from the stop: 10 mins 
Lost time (waiting + detour time): 15 mins 
Passengers on board: 4 

Private Car 
Travel time: 30 mins 
Fuel / energy cost: NZ$2 
Parking cost: No cost 
Congestion level: Less than 20% of time stopped 

in traffic 
Congestion charge / tolls: NZ$5 

Other (non-motorised) 
Travel time: 45 mins 
Availability of cyclepath: Good 
Ease of crossing in traffic: Pedestrian 

crossing 
Mode: Walk 

Source: ITF survey. 

Descriptive statistics 

Shared mobility adoption can depend on geographic location, gender, age and the number 

of private vehicles a household owns. This part of the section explores the extent to which 

the collected data align with existing evidence from literature to date. 

Geographic location appears to be one of the main determinants of modal preferences. 

Table 2.2 shows that the usual transport mode is bus for most respondents in Helsinki. 

Figure 2.1 displays mode choice patterns in conjunction with other important socio-

economic variables (i.e. gender, age, and number of cars). The panel referring to cities in 

Figure 2.1 illustrates that respondents from Helsinki tend to prefer shared mobility over the 

other modes. This panel also shows that respondents in Auckland prefer cars over public 

transport. The distribution of mode choice among respondents from Dublin indicates more 

equal preferences among modes. The estimated econometric models, presented in Section 

3 and Section 4, reflect these patterns. The panel corresponding to location in Figure 2.1 

illustrates that respondents living in the city centre are equally likely to opt for a car or a 
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shared mobility ride, and exhibit a higher propensity to choose non-motorised modes. In 

contrast, respondents far from the city centre appear to prefer private car over shared and 

non-motorised forms of transport. 

Table 2.2. Mean and standard deviation of social demographic variables by city 

  Helsinki Dublin Auckland 

Age 

  43 42.93 45.74  
(14.62) (13.37) (15.11) 

Number of cars in the household 

  0.55 1.13 1.88  
(0.50) (0.76) (0.74) 

Share of women  
0.5 0.49 0.52  

(0.50) (0.50) (0.50) 
Employment status 

Full time 0.35 0.57 0.54  
(0.48) (0.50) (0.50) 

Part time 0.15 0.23 0.15  
(0.36) (0.42) (0.36) 

Student 0.25 0.07 0.08  
(0.43) (0.25) (0.27) 

Unemployed 0.25 0.13 0.23  
(0.43) (0.34) (0.42) 

Usual transport mode 

Bus 0.45 0.20 0.10  
(0.50) (0.40) (0.29) 

Car 0.2 0.57 0.82  
(0.40) (0.50) (0.39) 

Rail 0.1 0.07 0.03  
(0.30) (0.25) (0.16) 

Walk 0.25 0.16 0.06  
(0.43) (0.37) (0.24) 

Note: Standard deviations are in parenthesis. 

Source: Authors’ elaboration of ITF survey data. 

Another insight issuing from Figure 2.1 is that women appear to have a weaker preference 

for non-motorised modes and stronger preference for shared mobility compared to men. 

These tendencies are also present in the literature, which indicates that women are generally 

less prone to consider cycling as a convenient transport mode (Garrard, Rose and Lo, 

2008[10]). Spurlock et al. (2019[11]) also find that women are more likely to adopt shared 

mobility than men.  

Mode choice patterns also appear to cohere with the literature regarding the impact of other 

socioeconomic variables. The strength of preferences for shared mobility and non-

motorised modes decrease with age, and the number of cars in the household is strongly 

correlated with stated preferences for private car travel. Respondents reporting having no 

cars in the household are more open to shared mobility. 
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Figure 2.1. Share of mode choice by socio-demographic characteristics 

 

Source: ITF Survey data 

Data used in simulations 

The simulation exercise presented in the paper uses input data generated by the ITF’s 

Global Urban Model. The model focuses on 1692 cities that, according to the UN Habitat, 

had over 300000 inhabitants in 2015. An extended version of the model incorporates 9660 

cities with populations of between 50000 and 300000 inhabitants around the world. The 

model uses aggregate land-use, transport supply and socioeconomic data collected for each 

of these cities to predict overall travel demand and vehicle ownership. A more detailed 

description of the global urban passenger transport model is provided in the Annex C of 

the paper. This study uses a subsample of 247 cities in 29 OECD countries. 

The simulations carried out in the study make use of synthetic trips generated using the 

output of the global urban model. The characteristics of these synthetic trips, such as cost 

and travel time, also vary between similar trips, whenever these are undertaken in different 

cities or by different transport modes. Trip origin, distance, and time of the day can also 

differentiate trips. For instance, a 5 km trip originating from a suburban area at peak hour, 

is characterised by different travel time and cost compared to a 5 km trip originating from 

the inner core of the city that is taken during an off-peak hour. The specification of the 

simulation model, as well as the exact way in which the characteristics of simulated trips 

enter it, is presented in detail in the second part of Section 3. 

The attributes of synthetic car trips largely depend on the characteristics of the city in which 

they are generated. Larger cities imply longer average trips. The time and the cost of these 

trips depends on a series of parameters. Cities with higher overall road capacity, higher 

speed limits and lower car ownership rates give rise to faster car trips than cities 

characterised by the opposite features. The cost of car trips is computed using the distance 
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of a trip and energy costs, where the latter are approximated from national values. If 

present, road tolls are incorporated in the simulated cost. Parking costs are also added, 

assuming an average duration of 3.0 hours of parking. 

 The attributes of synthetic public transport trips are generated using city specific-

characteristics as well as existing development plans of local authorities, operators or other 

providers. The average speed of a trip undertaken by public transport decreases with the 

overall mode share of busses in a city’s public transport supply. This implies that in cities 

where most of the passenger kilometres are carried out by rail and metro, a trip undertaken 

by public transport will generally take less time than the same trip in a city where all public 

transport is provided by busses. A similar rationale is used for waiting times. The average 

time needed to access a node of the public transport system is also factored in. This is 

approximated using the overall density of public transport stops in the city, i.e. number of 

stops per square kilometre. Public transport fares are statistically predicted using 

information on the GDP per capita, on whether the payment of trip fares is integrated across 

public transport modes in the city and by controlling for regional fixed effects. The level 

of comfort of public transport is approximated using the ratio between the overall capacity 

of the public transport system and the population of the city. 

 The attributes of synthetic trips carried out by non-motorised transport, i.e. walk and bike, 

are estimated using an assumed speed of 5 km/h for walking and 13 km/h for biking. Non-

motorised modes are assumed to entail no pecuniary costs.    

The attributes of synthetic shared mobility trips are generated using the corresponding 

attributes of travel by private car and the estimated size of the shared mobility vehicle fleet 

in the city. The travel time is calculated based on the time that would be needed had the 

same trip been made with a private car. That time is increased by an additional detour time, 

which depends on population density in the city. The rationale is that in areas of relatively 

lower density, the probability that a passenger will be matched to a suitable shared taxi bus 

vehicle within a given time interval is lower. This also implies that the detour and waiting 

times for synthetic trips are greater in low density areas. The fares of synthetic shared 

mobility trips depend on distance, as well as on the fuel and electricity costs of each city. 

Since lower population density decreases the probability of matching riders, it increases 

detour times and thus the corresponding simulated fares. In all cases, the simulated shared 

mobility fares are assumed to be at least as high as those of public transport. 

The simulation exercise generates a set of 48 trips for each city. These trips differ from 

each other with respect to at least one of the following: (i) trip distance, (ii) the time of the 

day in which the trip is generated (i.e. peak or non-peak hour), (iii) the departure location 

of the trip (i.e. suburban or urban area) and (iv) the type of vehicle used when shared 

mobility services are chosen (i.e. shared taxi or taxi-bus). Six distance intervals are 

considered: less than 1.0 km, 1.0-2.5 km, 2.5-5.0 km, 5.0-10.0 km, 10.0-20.0 km and 20.0-

40.0 km. Eight combinations of departure time, location and type of shared mobility 

service, shown in Table 2.3, correspond to each trip in each of these six categories, giving 

rise to a synthetic sample of 48 trips per city. For each such trip, the general rules outlined 

above are used to generate its corresponding attributes.   
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Table 2.3. Definition of a trip 

Type the subtitle here. If you do not need a subtitle, please delete this line. 

  Distance segment 

Origin: suburban Yes Yes Yes Yes No No No No 

Hour: peak Yes Yes No No Yes Yes No No 

Shared mode: Taxibus Yes No Yes No Yes No Yes No 

Source: Authors’ elaboration. 

Figure 2.2. Probability distributions of trip conditions 

 

Notes: All panels refer to cross-city distributions of city-specific means; Upper left panel: distance of trips; 

Upper right panel: estimated share of trips offered by taxi-bus, if they are made with a shared mobility mode; 

Lower left panel: share of trips undertaken during the peak hour; Lower right panel: share of trips originating 

from a suburban location.    

Source: Authors’ elaboration of ITF urban model data. 

Not all synthetic trips are equally likely to occur in a given city. Cities with large suburban 

surfaces and population generate a higher frequency of long, suburban trips. Furthermore, 

the bigger the footprint of a city is, the higher the relative frequency of longer trips. A direct 

outcome of the above is that an identical synthetic trip occurs with different relative 

frequencies across different cities. The distance panel in Figure 2.2 shows the distribution 

of the expected trip distances across the cities of the sample. The distribution is bimodal: 

the first peak corresponds to short distance trips of approximately 2 km and the second 

peak to trips of 7-8 km. The peak-hour panel in the same figure illustrates that in most cities 

around 30-35% of trips are generated during peak hours. Regarding the departure location, 

in most cities the share of trips originating in suburban areas lies below 40%. The shared 

mobility mode panel in Figure 2.2 displays the expected share that taxi-busses would have 

over shared taxis in a hypothetical scenario in which shared mobility services are widely 

used. This is approximated using the current amount of travel carried out by conventional 
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buses as a portion of travel carried out by all modes that currently resemble shared mobility, 

essentially conventional taxis, and public busses.  

Other key data used in the simulation include the projected total travel demand in each city 

between 2015 and 2050, the projected emission factors of each transport mode and the 

carbon intensity of electricity generation in each country. The exact role that these variables 

play in the simulation is detailed in Section 3.  

Table 2.4. Average attributes’ distribution over cities 

  
Min. 

Percentile 
Max. Mean 

Standard 

deviation   25th 50th 75th 

Non-motorised 

Bike 0.03 0.10 0.17 0.27 0.47 0.19 0.10 

Sidewalk / Cyclepath 0.16 0.23 0.26 0.33 0.68 0.29 0.10 

Priority crossing 0.20 0.25 0.30 0.38 0.75 0.34 0.12 

Travel time 11.16 32.90 44.21 62.62 147.46 48.70 24.98 

Car 

> 50% travel time stopped 0.00 0.00 0.00 0.00 0.29 0.02 0.07 

20 to 50% travel time stopped 0.00 0.00 0.00 0.00 0.58 0.04 0.14 

Fuel cost 0.07 0.24 0.39 0.70 1.96 0.51 0.35 

Parking cost 0.00 0.30 0.67 1.14 7.38 0.83 0.81 

Toll 0.00 0.27 0.65 1.04 3.16 0.74 0.60 

Travel time 2.18 10.93 16.21 24.46 108.27 19.17 13.40 

Public transport 

Accessing time 0.05 3.27 7.33 20.29 74.76 13.41 14.25 

Very crowded 0.00 0.29 0.32 0.41 0.64 0.35 0.11 

Crowded 0.17 0.48 0.51 0.52 0.56 0.49 0.06 

Fare 0.37 1.25 2.12 2.82 6.36 2.18 1.14 

Number of transfers 0.38 1.29 1.78 1.84 2.12 1.59 0.40 

Travel time 5.25 20.15 29.14 40.57 113.51 32.70 17.80 

Waiting time 2.17 9.17 13.87 14.48 16.20 12.06 3.49 

Shared mobility 

Accessing time 0.02 2.89 6.14 10.29 14.32 6.57 4.23 

Fare 1.16 4.14 5.82 8.36 30.93 6.80 4.26 

Lost time 2.24 12.60 17.75 24.88 45.77 19.11 8.53 

Number of passengers 0.68 3.08 4.85 6.53 20.46 5.22 2.75 

Travel time 2.95 20.98 31.98 49.07 148.79 37.11 24.83 

Source: Authors’ elaboration of ITF urban model data. 
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3.  Methodology 

Overview 

This section documents the methods and assumptions employed in this study. It is 

composed of two parts. The first part describes the econometric model used to evaluate the 

role of several key variables in determining an individual’s choice of transport mode. These 

variables include the standard modal attributes, such as travel time and cost, as well as 

socioeconomic factors that could favour or hamper the use of different transport modes, 

such as age and gender. The econometric model is estimated using stated preference data 

based on a hypothetical setting where individuals choose between a shared mobility service 

and other, traditional transport mode options, such as bike, walk, car and bus. These data 

are described in detail in the first part of Section 4. 

The second part utilises the estimated preference parameters of the econometric model to 

project the impact of a widespread deployment of shared mobility services on the amount 

of CO2 emissions generated by urban passenger transport. The projections use a large 

sample of synthetic trips generated for 247 OECD cities using the International Transport 

Forum’s Global Urban Model. The present analysis computes the expected carbon footprint 

of each of these trips in a reference situation, in which shared mobility services enjoy 

limited popularity or are completely absent from a city. Then, it repeats the calculation for 

a counterfactual future situation, in which the underlying barriers responsible for the 

current limited uptake of these services are substantially weakened. The corresponding 

synthetic cross-city data are described in the second part of Section 2.         

Econometric model 

Evaluating consumer proclivity to adopt shared mobility services requires the estimation 

of the parameters that govern the mode choices made by transport users. The focus is on 

the preference parameters that underlie the sensitivity of transport mode choice to variables 

that differ across the various alternatives, such as car, public transport, shared mobility and 

soft mobility. The larger the magnitude of these parameters, the more prone consumers are 

to switching transport mode following a change in relative travel times, costs and other 

important modal characteristics. Obtaining numerical values of these impacts requires 

specifying and estimating a parametric statistical model.    

The analysis in this paper is based on a random utility model (RUM). In such a model, the 

personal level of well-being or satisfaction individual 𝑛 obtains from a hypothetical trip 𝑟 

with transport mode 𝑖 is given by: 

 
𝑈𝑛𝑟𝑖 = 𝐴𝑛𝑖 + 𝐗𝑟𝑖𝛃𝑖 + 𝐒𝑛𝛂𝑖⏟        

𝐬𝐲𝐬𝐭𝐞𝐦𝐚𝐭𝐢𝐜 𝐮𝐭𝐢𝐥𝐢𝐭𝐲 (𝑉𝑛𝑟𝑖)

+ 𝜀𝑛𝑟𝑖⏟
𝐫𝐚𝐧𝐝𝐨𝐦
𝐮𝐭𝐢𝐥𝐢𝐭𝐲

. 
(1) 

In equation (1), 𝑋𝑟𝑖 denotes a series of variables that vary across trips and modes, such as 

the travel time and cost; 𝑆𝑛 denotes a set of socio-demographic variables, which differ 

across individuals but are constant across all trip and mode combinations (𝑟,𝑖) a given 

individual 𝑛 faces. In the same equation, 𝜀𝑛𝑟𝑖 denotes a random term, which varies across 

individuals, trips and transport modes. That term represents omitted factors that can 

influence the choice of transport mode. For example, it could embody the presence of a 
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shopping mall, which is accessible if the hypothetical trip 𝑟 is realised with a car. It could 

also encapsulate any other unobserved characteristic of mode 𝑖 or individual 𝑛 that is 

important for transport mode choice. Although such factors could potentially play a role in 

mode choice, they are not observed and are therefore excluded from the systematic part of 

utility 𝑉𝑛𝑟𝑖. Finally, equation (1) contains a transport mode-specific term, 𝐴𝑛𝑖, which 

represents the average utility from unobserved factors in transport mode 𝑖 relative to the 

reference mode. This utility is differentiated by several socioeconomic factors that vary 

across individuals.      

Table 3.1. Control variables in the econometric model 

Variable 
Included in the 

compact model?  

Travel time in soft mobility: the time to carry out the trip with bike or walk Yes 

In-vehicle travel time: in public transport, private car and shared mobility modes Yes 

Access and waiting time in public transport: the time needed to access the public transport stop and 

the average waiting time 

Yes 

Lost time in shared mobility modes: Time lost due to the detours of vehicles delivering ride-sharing 

services. 

Yes 

Travel cost of trip if taken by car: (i) fuel and toll cost, (ii) parking cost Yes 

Travel cost of trip if taken by public transport: inferred public transport fare Yes 

Travel cost of trip if taken by shared mobility: assumed service fare Yes 

Travel conditions of trip if taken by soft mobility: presence of bike lanes and priority crossing.  Yes 

Travel conditions of trip if taken by car: presence of moderate or severe congestion. Yes 

Travel conditions of trip if taken by public transport: (i) standing for a part of the trip (ii) number of 

transfers 

Yes 

Travel conditions of trip if taken by shared mobility: (i) number of co-passengers Yes 

Socioeconomic variables interacting with soft mobility:(i) senior or not, (ii) gender  No 

Socioeconomic variables interacting with car: (i) adult or not, (ii) young or not (iii) household 

possesses no cars, (iv) household possesses multiple cars, (v) household located far from the centre. 

No 

Socioeconomic variables interacting with public transport: (i) unemployed or not, (ii) household 

possesses no cars 

No 

Socioeconomic variables interacting with soft mobility:(i) gender, (ii) unemployed or not  No 

Note: The compact model is used for the simulation projecting the uptake of shared mobility in future years.  

The control variables included in the econometric model are presented in Table 3.1. These 

include different components of the travel time, costs, and conditions of a trip taken by 

mode i. They also incorporate the sociodemographic characteristics of individual n that 

play a role in the choice of transport mode. For public transport and shared mobility modes, 

components of travel time include waiting time, in-vehicle time and the time needed to 

access a public transport stop or a ride-sharing pick up point. For car and soft mobility, i.e. 

walking and biking, travel time consists only of in-vehicle and active travelling time, 

respectively. Lost time due to detours and route re-optimization is integral to any ride-

sharing service, as such services will almost always deviate from the shortest or fastest path 

in order to ensure a high occupancy rate by serving multiple passengers simultaneously. 

The latter is a prerequisite for these services to break even, i.e. to make profits rather than 

deficits. However, the environmentally relevant goal of a minimum occupancy rate could 

hypothetically be imposed by policy-makers aiming to ensure a large number of passenger 

kilometres per vehicle kilometre travelled. 
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Regarding costs, public transport and shared mobility travel entail only a trip fare, whereas 

car travel entails fuel, toll and parking costs. Walking and biking do not entail any 

pecuniary costs. In addition to travel time and costs, the model controls for various 

qualitative aspects. Qualitative controls include the level of congestion for car travel, as 

well the presence of bike lanes and priority crosswalks for biking and walking. They also 

incorporate the possibility that a passenger needs to stand during a trip, the number of 

transfers for public transport and the number of other passengers in the vehicle for shared 

mobility.  

The econometric model in (1) attempts to predict transport mode choice by exploiting the 

variation of observed factors, which are summarised in Table 3.1 and are embodied in 𝑉𝑛𝑟𝑖. 
It also exploits the variation of unobserved factors, which are captured in the term 𝜀𝑛𝑟𝑖. It 
can be shown that if the unobserved factors in 𝜀𝑛𝑟𝑖 are distributed identically and 

independently across individuals and transport modes, the probability that individual 𝑛 

chooses to make the hypothetical trip 𝑟 with mode 𝑖 is: 

 𝑃𝑛𝑟𝑖 =
𝑒𝑥𝑝(𝐴𝑛𝑖 + 𝐗𝑟𝑖𝛃𝑖 + 𝐒𝑛𝛂𝑖)

∑ (𝑒𝑥𝑝(𝐴𝑛𝑗 + 𝐗𝑟𝑗𝛃𝑗 + 𝐒𝑛𝛂𝑗))𝑗

=
𝑒𝑥𝑝(𝑉𝑛𝑟𝑖)

∑ (𝑒𝑥𝑝(𝑉𝑛𝑟𝑗))𝑗∈𝒞

. (2) 

where 𝑗 indexes an arbitrary transport mode in the choice set 𝒞. The latter set contains all 

possible options considered in the model: car, public transport, soft mobility (i.e. walking, 

biking) and shared mobility. The choice probability of any of these options (e.g. 𝑖) increases 

with the utility that option provides the user, represented by the numerator of equation (2), 

relative to the general utility gained from all available options. This general utility is 

represented by the denominator of equation (2).  

The estimation technique adjusts the parameters corresponding to the control variables in 

(1) so that the logit choice probabilities predicted by the econometric model shown in (2), 

are well-aligned with the observed choices individuals make in the survey data. This 

technique, known as maximum likelihood estimation, is elaborated in the Annex B of the 

paper. The corresponding estimation results are presented in Section 4 and Annex A.    

Based on the estimation results of this model, Section 4 identifies how public policies could 

accelerate the uptake of shared mobility services. That analysis is based on how equation 

(2) is affected by changes in the explanatory variables it contains. The rationale behind this 

is that several of the control variables in Table 3.1 can be affected by policies. For instance, 

car travel times can be affected by congestion management and road pricing measures. 

Similarly, the public transport costs incurred by an individual can be affected through 

public transport fare subsidies. Changes in policy instruments that change the levels of the 

variables included in 𝐗𝑟𝑖 induce changes in the probability with which each transport mode 

is chosen. The formulas describing the elasticities, i.e. the sensitivity of these choice 

probabilities to changes in mode and trip-specific variables, such as travel time and cost, 

are presented in the Annex B of the paper. 

The econometric analysis provides insights regarding why the penetration rate of shared 

mobility services is currently low and how it could be accelerated by policies. However, it 

does not provide information on the environmental impact of a transition to shared mobility 

services. The simulation model documented in the next sub-section builds upon the results 

of the econometric model to project the impact of such transition to CO2 emissions. 
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Simulation model 

The estimated values of the parameters entering equations (1) and (2) can be used to 

simulate the change in the greenhouse gas emissions caused by a widespread deployment 

of shared mobility services. To this end, the study uses the following formula to 

approximate the carbon footprint of passenger transport in a given city 𝑐 at year 𝑡: 

𝐸𝑐𝑡 = 𝑇𝑐𝑡∑

(

 
 
𝜋𝑟𝑐𝑡∑

(

 
 
D𝑟 𝑃𝑐𝑟𝑗𝑡(𝐱𝑟𝑗𝑐; �̂�𝑗 , 𝛺𝑗𝑐𝑡)

e𝑐𝑗𝑡

L𝑐𝑗𝑡⏟            
𝐜𝐚𝐫𝐛𝐨𝐧 𝐟𝐨𝐨𝐭𝐩𝐫𝐢𝐧𝐭 𝐨𝐟 𝐭𝐫𝐢𝐩 𝑟 

𝐰𝐢𝐭𝐡 𝐦𝐨𝐝𝐞 𝑗 𝐢𝐧 𝐜𝐢𝐭𝐲 𝑐 𝐚𝐭 𝐲𝐞𝐚𝐫 𝑡 )

 
 

𝑗

)

 
 

𝑟

. (3) 

The variables and indexes entering equation (3) are described in detail in Table 3.2. 

Table 3.2. Variables and indexes used in the simulation model. 

Variable 

or index 
Description 

  

𝑟 

A type of simulated trip, differentiated by its length, the time of the day at which it is initiated (on peak or off-
peak), the place from which the traveller departs (suburban or urban location), the available transport mode if 

the trip is undertaken with public transport (bus or rail) and the available transport mode if the trip is undertaken 

with shared mobility (shared taxi or taxi-bus).   

D𝑟 The distance category at which trip r belongs to. Categories are: less than 1.0 km, 1.0-2.5 km, 2.5-5.0 km, 5.0-

10.0 km, 10.0-20.0 km, 20.0-40.0 km. 

𝑡 The time between the benchmark year (2015) and a future year (e.g. in 2020, t = 5).  

𝑐 Indexes a city of an OECD country included in the simulation study (247 cities). 

𝑗 Indexes a transport mode out of: soft mobility (bike, walk), public transport (bus or light rail), car and shared 

mobility (shared taxi or shared minibus).  

𝑇𝑐𝑡  Travel demand in city c in year t, expressed relative to the total travel demand of a reference city c, in the 

benchmark year (2015). 

𝜋𝑟𝑐𝑡  
Relative frequency of trip type r in the trips materialising in city c during in year t.   

𝐱𝑟𝑗𝑐  The set of attributes (e.g. travel time, cost) of trip type r, when that is materialised in city c by transport mode j. 

�̂�𝑗 Estimated parameters. 

𝛀𝑐𝑡  Alternative specific constants. In the benchmark year, 𝛀𝑐0 replicate the market share of each transport mode 

(modal split) in each city c. 

E𝑐𝑗𝑡  CO2 per vehicle kilometre travelled by transport mode j in city c during year t. 

L𝑐𝑗𝑡  Load factor, i.e. the average number of passenger kilometres for each vehicle kilometre  travelled by transport 

mode j in city c during year t 

Source: Generated by the authors. 

Some of the variables entering equation (3) require specific attention. Variable L𝑐𝑗𝑡 denotes 

the load factor, i.e. the average number of passenger kilometres served for each kilometre 

traversed with a vehicle of transport mode 𝑗. The term e𝑗𝑡 is the emission factor, i.e. the 

amount of CO2 released for each kilometre traversed with a vehicle of transport mode 𝑗. 
Both terms vary across cities and can evolve over time. The subscript 𝑟 denotes a synthetic 

trip which is simulated using the global urban model developed by the ITF. This trip, whose 



ENV/WKP(2021)7  21 
 

EXPLORING THE IMPACT OF SHARED MOBILITY SERVICES ON CO2 
Unclassified 

total distance is D𝑟, has a set of attributes which are denoted by 𝐱𝑟𝑗𝑐 and therefore differ 

across modes, trip types, and cities. These attributes are enumerated in Table 3.1. Section 

2 provided an overview of how these attributes are generated in the model from known 

variables. The probability that trip 𝑟 is taken by a specific transport mode 𝑖 in city 𝑐 during 

year 𝑡 is assumed to be expressed through a logit model: 

 𝑃𝑐𝑟𝑖𝑡(𝐱𝑟𝑐; �̂�𝑗, 𝛺𝑖𝑐𝑡) =
𝑒𝑥𝑝(𝛺𝑖𝑐𝑡 + 𝐱𝑟𝑐𝑖�̂�𝑖)

∑ (𝑒𝑥𝑝(𝛺𝑗𝑐𝑡 + 𝐱𝑟𝑐𝑗�̂�𝑗))𝑗

. (4) 

The parameters �̂� are imported to equations (3) and (4) by re-estimating the econometric 

model in (1) and (2) with a subset of the control variables used in the full specification. 

These are the variables included in the compact version of the econometric model, 

enumerated in Table 3.1. This subset contains the explanatory variables that vary across 

combinations of trips and modes, such as travel times, travel costs and travel conditions. 

The subset is denoted by 𝐱𝑟𝑐𝑖 in equation (4). The compact version of the econometric 

model excludes the socioeconomic characteristics mentioned in Table 3.1, which were 

denoted by 𝐒𝑛 in (1) and (2). These include, among others, age, gender and unemployment 

status. The reason for excluding these socioeconomic variables is that the available cross-

city data do not contain socioeconomic information that matches 𝐒𝑛 in the same way that 

travel times, costs and conditions are matched across 𝐱𝑟𝑐𝑖 and 𝐗𝑟𝑖. 

The simulation model utilises a set of trips that differ with respect to distance, departure 

time, i.e. on peak or off-peak, and departure location, i.e. suburban versus central. Thus, 

each combination of distance, departure time and location gives rise to a different trip 𝑟. 

Section 2 and Annex C briefly explain how the ITF Global Urban Model simulates the 

corresponding attributes of the trip, such as travel time, cost, and conditions, for each 

transport mode 𝑖 and city 𝑐.  

In addition to mode choice, the simulated emissions in equation (3) depend on total travel 

demand, which is denoted by 𝑇𝑐𝑡. Not all sample trips generated for a given city are equally 

likely to occur. The higher the relative frequency of longer, more emission-intensive trips, 

the higher the total emissions generated by urban transport are. The relative frequency of a 

trip 𝑟 in city 𝑐 at year 𝑡 is denoted by 𝜋𝑟𝑐𝑡 in equation (3) and is computed using the ITF 

global urban transport model.   

The constant terms of the simulation model, i.e. 𝛺𝑐𝑖𝑡, are calibrated such that the predicted 

choice probabilities for each transport mode in a given city fit the best guesses for the 

corresponding actual modal split for the benchmark year. The Annex B of the paper 

provides more information about the calibration exercise.  

In summary, the simulation model allows the emissions to vary with the overall travel 

demand, the relative frequency of distant trips, the share of carbon-intensive modes in the 

various trip categories, the occupancy rate of various transport modes and their carbon 

intensity. Section 5 provides the results from the various simulation exercises and 

highlights the corresponding policy implications of it.   
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4.  Econometric results and policy analysis 

Overview 

This section presents the results of the econometric analysis using choice experiment data 

collected in Auckland, Dublin, and Helsinki. The aim of this section is twofold. First, it 

explores traveller preferences for the different transport modes available to them in the 

choice experiment. Specifically, the analysis sheds light on the value that people place on 

the various attributes of each of these modes, e.g. travel cost and travel time. It also provides 

insights regarding how changes in these attributes induce subsequent changes in the 

propensity to choose these modes and their alternatives. The results point to policy levers 

that will likely be effective in encouraging the uptake of shared mobility. The econometric 

estimates are also used to project the future uptake of shared mobility services and to 

simulate their environmental impacts. That simulation is presented in Section 5.   

The section consists of three parts. First, it provides a brief qualitative review of the 

estimation results of the multinomial logit regression. Second, it reports the elasticities 

calculated from these parameter estimates. Finally, it draws a number of implications for 

the design of policies that aim to increase the uptake of shared mobility services in cases 

where such an increase is expected to have net social benefits. 

Estimation results 

The parameter estimates of the multinomial logit model (see Annex A) reflect how each of 

the variables included in the model impact the probability of choosing a particular transport 

mode. Three models are estimated. The first is a complete model that includes variables 

distinguishing between different types of pecuniary costs associated with car use. The 

second model is tailored to estimate willingness-to-pay (WTP), in which the impact of all 

of the pecuniary costs of car use are estimated jointly. The third is a compact model that 

includes only variables that correspond to those used in the simulation exercise presented 

in Section 5. The parameter estimates of these models are reported in Table A A.2 in Annex 

A.3 The results reviewed in this section reflect the complete model. 

Regarding travel by private car, most of the estimates are qualitatively aligned with 

theoretical underpinnings and earlier empirical evidence. As expected, travel time has a 

negative impact on the probability of choosing to travel by car. The cost coefficients 

indicate that fuel costs and parking prices also have a negative impact on the likelihood of 

choosing car travel. However, parking prices appear to constitute a stronger disincentive 

than fuel costs and tolls together.4 Congestion also affects mode choice, a finding that 

                                                      
3 Private car is chosen as the reference mode in all estimations. Although the choice of reference 

mode can be arbitrary, car is used in this case because it is the current preferred mode of most 

individuals in our sample, as indicated by self-reports gathered in the survey. Additionally, 

evaluating preferences for alternative modes relative to those for private car use yields insights 

readily suited to policies seeking to shift travel away from private car use as the dominant mode.  

4 This is likely due to the fact that in this stated preference survey people do not have the opportunity 

to repeat their choices and learn from possible mistakes as they would in a repeated daily routine. 

However, there may indeed be a behavioural bias that makes people more sensitive to parking costs 

than to fuel and toll costs, even in real life situations. 
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corroborates earlier contributions (Wardman and Nicolás Ibáñez, 2012[12]). The results 

show that a moderate amount of congestion, here defined as a situation in which vehicles 

are stopped between 20% and 50% of the travel time, reduces the probability of choosing 

to travel by car. This may arise from the uncertainty that congestion introduces with respect 

to travel time, as well as the fact that the amount of time saved in congested situations may 

be more valuable. Young people and those with no cars in the household are also less likely 

to choose private car as a mode of transport. In contrast, residing far from the city centre 

and owning more than one vehicle increase the likelihood of choosing to travel by private 

car.  

 In-vehicle travel time, the time required to access a public transport stop and waiting time 

reduce the likelihood of travelling by public transport. As it has been found in literature 

(Wardman and Whelan, 2011[13]), walking and waiting time are considered twice as costly 

as in-vehicle time. The same holds for public transport fares, the degree to which the public 

transport mode is crowded during a trip (Haywood and Koning, 2015[14]; Wardman and 

Whelan, 2011[13]) and the number of transfers (Schakenbos et al., 2016[15]; Garcia-Martinez 

et al., 2018[16]). In terms of the role of individual-specific characteristics, adults are less 

likely to use public transport, while the opposite is true for those with no cars in the 

household and those who are not currently employed. The latter group includes those 

unemployed, voluntarily unemployed and retired.  

Regarding non-motorised transport modes, the estimation results indicate that women are 

less likely to travel by bike and that seniors are less likely to choose either walking or 

biking. The provision of infrastructure for non-motorised modes of travel, namely bike 

lanes and priority crossings for pedestrians, does not appear to affect the likelihood of 

choosing to travel via these modes significantly. 

As it is the case with other modes, the likelihood of choosing shared mobility decreases 

with a higher fare and longer in-vehicle and out-of-vehicle times. Respondents also prefer 

having fewer co-passengers in the vehicle. Women and those who are unemployed tend to 

favour shared mobility over private car transport, whereas those who live in Dublin appear 

to be less likely to choose shared mobility versus private car travel, all else equal.  

Elasticities 

In contrast to parameter estimates, the resulting elasticity values, which are shown in Table 

4.1, have a direct interpretation. These values reflect the degree to which the estimated 

probability of choosing shared mobility responds to changes in the independent variables. 

These changes could occur in attributes of the shared mobility service itself, in attributes 

of alternative modes, as well as in socio-demographic characteristics. As detailed in Annex 

B, elasticities reflect the ratio of the percentage change in one variable to the percentage 

change in another, based on the estimated coefficients in the utility function. For instance, 

an elasticity of 0.5 implies that increasing the underlying attribute by 10% will induce a 

5% increase in the value of the examined probability.5 Beyond the qualitative information 

provided by the coefficient estimates from the multinomial logit model, these values 

provide information about how people are willing to make trade-offs between attributes.  

                                                      
5 This means that if the probability was initially 20%, it will have to increase to 21%. This is not to 

be confused with a probability increase of 5.0 percentage points, which would lift the above 

probability to 25%. 
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Table 4.1. Elasticities and cross-elasticities for probability to choose shared mobility 

  Mode and attribute affected  

Attribute changing SM PT C BW 

Mode-specific characteristics     

Trip cost -0.37224 0.060905     

Travel time -0.19361 0.060587 0.351132 0.304922 

Accessing/waiting/lost time -0.11898 0.076986     

Number of passengers in the vehicle -0.11265       

Need to stand for at least part of the trip   0.062049     

Vehicle is a bus   -0.05232     

Number of transfers   0.033293     

Fuel and toll costs     0.171142   

Parking cost   
 

0.12118   

City- and individual-specific characteristics    

20 to 50% travel time stopped   
 

0.029102   

Age < 26     0.025276   

Residing far from the city centre   
 

0.064574   

Having more than one car in the household   
 

-0.09751   

Having no cars in the household   -0.00761 0.067471   

Age 26-45    0.02505     

Being unemployed 0.05214 -0.01772     

Residing in Dublin -0.10122       

Being female 0.092736       

Being female and using a bike   
 

  0.032387 

Bike lanes and pedestrian priority measures in place       -0.00334 

Age > 65       0.015287 

Note: All elasticities computed from estimated coefficients with a 10% level of significance. Medium amount 

of congestion reflects the fact that, when taking a car, the traveller should expect to be stopped for 20-50% of 

the total travel time. 

Source: Authors’ elaboration from the econometric results and ITF survey data. 

The elasticities referring to the likelihood of choosing shared mobility are reported in Table 

4.1. In this table, the row indicates the attribute that changes, while the four columns 

entitled SM, PT, C and BW refer to the mode whose attribute is affected. Positive values 

indicate that an increase in the attribute of the underlying mode is associated with an 

increase in the probability of choosing shared mobility. A negative value indicates that an 

increase in this mode’s attribute is associated with a decrease in the probability of choosing 

shared mobility, and vice versa. For example, a one percent increase in the fuel and toll 

costs of private car use increases the probability of choosing shared mobility by 0.17%. 

Low absolute values represent a relatively inelastic relationship, meaning that the 

probability of adopting a shared mobility service is not very responsive to the change in 

underlying attribute of the mode considered. All absolute values found in this study are less 

than one, indicating that a change in the considered mode attribute is associated with a less 

than proportional change in the probability of choosing shared mobility. 

The potential behavioural responses captured by these elasticities provide insights into the 

conditions that are likely to increase the probability of shared mobility uptake. The 

responses can be divided into three broad categories, namely responses stemming from: (i) 

changes in the characteristics of the shared mobility service itself, (ii) changes in the 
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characteristics of alternative transport modes, (iii) changes in city- and individual-specific 

characteristics. 

The elasticities reported in Table 4.1 are point-elasticities, which are evaluated at the 

sample mean. As such, they can mask significant heterogeneity in the range of elasticities 

that can be obtained by examining the entire sample. Therefore, examining the distribution 

of key elasticities across the entire sample can provide a basis for much richer policy 

analysis. These distributions are shown in Figure 4.1. 

Figure 4.1 shows the distribution of elasticities for shared mobility attributes across the 

entire sample. The own-elasticities indicate that the propensity to choose shared mobility 

is sensitive to the characteristics of the shared mobility service itself. The more expensive 

a ride is, the longer the in-vehicle and out-of-vehicle times are, and the larger the number 

of passengers sharing the vehicle with the respondent, the lower the likelihood that this 

respondent will choose shared mobility. The probability of choosing shared mobility is 

most sensitive to changes in the fare price of a shared mobility trip.  

Figure 4.1. Distribution of the elasticities of shared mobility attributes 

 

Source: Authors’ elaboration from the econometric results and ITF survey data. 

Shared mobility elasticities display specific patterns that matter for policymaking. First, the 

elasticity with respect to the fare indicates that a non-negligible portion of respondents in 

the choice experiment demonstrate greater responsiveness to changes in fare price. Second, 

the elasticity with respect to the travel time indicates that while a portion of observations 

exhibit a very low sensitivity to changes in the travel time of shared mobility, another 

contingent of observations indicates relatively higher sensitivity to these changes.  

The cross-elasticities in Table 4.1 indicate that choosing shared mobility is most sensitive 

to changes in the travel times and costs of alternative modes. A 1% increase in the travel 
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time for private car and non-motorised modes increases the propensity to choose shared 

mobility by an average of 0.35% and 0.30%, respectively. Similarly, a 1% increase in fuel 

or toll costs and in parking costs for private cars increases the probability of choosing 

shared mobility by an average of 0.17% and 0.12%, respectively.  

Figure 4.2 shows the distribution of cross-elasticities with respect to the attributes of 

alternative modes across the entire sample. The range of cross-elasticities is greatest for car 

travel time, with a maximum of 1.26, indicating that some people in the sample are quite 

sensitive to car travel time and would be prone to switch to shared mobility if car travel 

times become long. Other attributes, such as the non-in-vehicle time spend travelling by 

public transport, and the parking costs for private cars, have smaller ranges, indicating that 

people are less sensitive to changes in these attributes when it comes to the propensity to 

adopt to shared mobility. 

Figure 4.2. Cross-elasticities with respect to alternative mode attributes 

 

Source: Authors’ elaboration from the econometric results and ITF survey data. 

Table 4.1 indicates that while higher parking prices may induce some people to consider 

shared mobility, this is not the case for most. This is evident insofar as the average cross-

elasticity with respect to parking costs masks a skewed distribution in which the propensity 

to choose shared mobility is insensitive to parking costs for private cars for a large portion 

of the observations. Additionally, the distribution of elasticities differs across attributes, 

meaning that public responses to these policies will differ from the average response in 

different ways for different attributes. 

The values reported for the variables gender and place of residence (i.e. Dublin versus other 

cities) represent changes in the probability of choosing shared mobility. Women may be 

more likely to choose shared mobility than men if they are less likely to own a car and have 

lower time valuations relative to men. The impact of gender on the likelihood of choosing 
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shared mobility can be further investigated. For example, the model predicts that if all users 

were male shared mobility services would supply 40% of total travel demand. In contrast, 

if all users were female, the share of shared mobility services in the modal split would rise 

to 49%.6 A similar exercise comparing the place of residence finds that if all users are 

assumed to live in Dublin, the mode share of shared mobility services is 35%, which rise 

to 49% if no users are assumed to live in Dublin.  

Policy implications 

A number of policy-relevant insights can be drawn from the results of the econometric 

analysis, notably from the resulting elasticities and cross-elasticities reported in the 

previous section. First, the calculated elasticities point to certain measures that would be 

effective in encouraging the uptake of shared mobility. Second, the uptake of these services 

should not come at the expense of public transport and non-motorised modes (walking and 

biking), as long as they are associated with greater social benefits than shared mobility. 

When this is the case, shared mobility services should be designed so as to complement 

existing public transport services and non-motorised transport infrastructure. 

 Case-by-case analyses will be useful in identifying the optimal policies to support shared 

mobility uptake without attracting users from public transport and non-motorised modes. 

Case-by-case analyses will also enable policymakers to identify situations in which shared 

mobility is associated with higher net social benefits than public transport. In these cases, 

shared mobility services could be promoted even at the expense of public transport. 

Promoting shared mobility over public transit may be justified, for instance, in sparsely 

populated areas where heavy public transit infrastructure is not cost-effective or in areas 

where providing this infrastructure is not feasible, e.g. for geographic reasons. Ensuring net 

gains in social welfare with the introduction of shared mobility services could be 

accomplished, for example, through regulations regarding occupancy rates, fare structures, 

integration with public transport or the way in which shared mobility services are 

dispatched and routes optimised. The possibility that shared mobility could exacerbate 

urban sprawl by increasing accessibility for those living in low density peripheral areas 

should also be considered.  

Negative elasticities with respect to the trip cost, travel time, accessing time and waiting 

times of shared mobility services indicate that these attributes should be minimised in order 

to encourage the uptake of these services. Policies designed according to average 

elasticities are likely to generate behavioural responses that are not uniform across the 

population, which may lead to unexpected outcomes. For this reason, the potential for 

heterogeneous preferences should be investigated during feasibility studies for new shared 

mobility services in order to gauge the viability of uptake in a given city. 

The results suggest that measures aiming to increase the generalised cost of car use will 

increase the probability of adopting shared mobility. This can be illustrated through 

estimations of the market shares. Assuming that all attributes are at their average levels, 

the market share of shared mobility in the survey is 44%. If the average cost of a car trip 

increases by $1.00, the market share of shared mobility rises to 47%. Parking costs could 

potentially be more effective in changing market shares. A $1 increase in the average 

parking cost results in a shared mobility market share of 50%. The implementation of 

distance-based charges and cordon tolls that offer an exemption for shared mobility 

                                                      
6 These calculations set the rest of the attributes at their survey sample mean.    
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vehicles exceeding a minimum occupancy level could possibly generate a double dividend. 

That is, it could encourage the uptake of high-occupancy shared mobility services, while 

decreasing the use of private vehicles. Insofar this policy mix aligns with other policy 

objectives, such as reducing congestion, it can be generalised to any mix that combines 

disincentives for car use and incentives for shared mobility use.  

Efficient routing algorithms and access to fast lanes will contribute to reducing accessing, 

waiting, and travel times of shared mobility trips. Moreover, access to fast lanes could be 

conditioned on a minimum number of passengers in shared mobility vehicles. Such a 

minimum occupancy requirement could further augment time savings, insofar as it could 

ease congestion. In the long term, trip fares could be significantly reduced with the 

penetration of autonomous vehicles in shared mobility fleets.  

Some of the findings highlight the ultimate limitations of shared mobility. While the 

potential environmental benefits of shared mobility stem from its high-occupancy nature, 

the analysis suggests that the adoption rate of these services will decrease with occupancy 

rate. This is evidenced by calculating the effect that a change in the number of passengers 

has on the expected market share of these services. With a unique passenger, the expected 

market share of shared mobility is 48%. With sixteen passengers in a taxi-bus, the market 

share falls to 25%. This finding suggests that shared taxis may be more readily adopted in 

the immediate term than shared taxi-busses and shuttles. In turn, that introduces a ceiling 

in the potential of shared mobility to reduce the carbon footprint of urban transport, a 

limitation that is reflected in the results of Section 5.  

Policy makers should keep in mind, however, that any incentives provided to encourage 

the uptake of shared mobility should not undermine the relative attractiveness of public 

transport services. Given that travel undertaken via shared mobility will typically have a 

higher emissions-intensity than travel undertaken via public transport, it is unlikely that the 

net environmental benefits of shared mobility use will be positive for travellers who switch 

from public transport. This will also hold true when travel via shared mobility replaces 

travel via non-motorised transport modes, as non-motorised modes generate zero 

emissions. Measures to promote shared mobility should therefore be designed so as not to 

draw riders away from public transport, walking and biking.  

In contexts where efficient high capacity public transport networks already exist, shared 

mobility services can serve as a useful complement to public transport. Policies that seek 

to coordinate shared mobility with public transport networks can constitute part of a general 

strategy that harnesses the synergies between emerging shared mobility services and 

existing transport systems. The greater flexibility that characterises both the occupancy 

rates and geographical network of shared mobility services could establish them as a 

potential complementary mode to public transport in many areas. That is, by providing 

these “feeder” services, shared mobility could facilitate the transport of people to and from 

public transit stations. That would increase the access to and ridership on public transit 

systems.  

Taken together, the results presented here show that the presence and magnitude of 

environmental benefits from shared mobility services depend on a number city-specific 

characteristics. These include the extent and the quality of the existing public transport 

supply, as well as the habits and preferences of its population. Furthermore, the potential 

environmental benefits depend on the specific operational characteristics of the 

implemented service (e.g. occupancy rates, emissions-intensity per vehicle-kilometre). The 

following section explores the potential of shared mobility systems to reduce greenhouse 

gas emissions in more than 200 cities worldwide.  
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5.  The impact of shared mobility on greenhouse gas emissions  

Overview 

This section provides the results and the associated policy implications from the application 

of the simulation model exhibited in the second part of Section 3. The simulation exercise 

focuses on the differential impact that shared mobility services could have on the 

greenhouse gas emissions of urban transport. To this end, the section examines the extent 

to which a widespread deployment of shared mobility services could give rise to additional 

emission reductions. These reductions come on top of those stemming from overall 

technological progress, which encompasses increased fuel efficiency of conventional 

vehicles and less carbon-intensive electricity generation. However, such reductions are far 

from guaranteed and depend on the context of each specific city, region, and the country it 

belongs to. In fact, it has been proposed that ride sharing may even increase miles travelled 

for a variety of reasons. These include the additional distances travelled between clients, 

i.e. the pick-up detours, or the displacement of the use of public transportation. Recent 

research such as Henao and Marshall (2019[17]) shows that miles travelled and associated 

emissions may increase with the use of these services, or that the impacts of these services 

on miles travelled is uncertain (Circella et al., 2018[18]), though these results could change 

in the longer term.   

Whenever present, the additional emissions reductions originate from the fact that shared 

mobility may cause a shift away from conventional private car use, which is characterised 

by a low passenger-to-vehicle kilometre ratio. In contrast, shared mobility enables multiple 

passengers to be simultaneously served with every traversed vehicle kilometre. As such, 

high-occupancy forms of shared mobility can also constitute an alternative to public 

transport. If the carbon footprint of the latter is relatively low, however, a shift toward 

shared mobility and public transport could generate a considerable rebound effect that 

would eliminate part of the gains obtained from the shift away from conventional cars.  

The simulation exercise presented in this section accounts for this dynamic. That is, it 

allows scenarios to have different impacts on the relative attractiveness of each transport 

mode, which gives rise to a different evolving market share (modal split) for each of them. 

To calculate the change in emissions resulting from the change in modal split, the study 

accounts for a number of relevant variables that evolve between 2015 and 2050. 

Specifically, the simulation factors in each city’s expected increase in total travel demand, 

which is an outcome of population and income growth. It also accounts for expected 

improvements in the emission factors (CO2 vkm⁄ ) of all modes and in the carbon intensity 

of electricity generation (CO2 kWh⁄ ).                    

The analysis uses a sample that covers 247 cities in 29 OECD countries and contains 

synthetic trips of various distances, departure times and departure locations within each 

city. It imports the preference parameters for the impact of travel time, cost and other 

important attributes on the choice of transport mode. As shown in Section 3, these 

parameters are estimated using survey data from Auckland, Dublin and Helsinki, hence 

they are not able to accurately reproduce the travel patterns in the remaining 244 cities. To 

correct for this, a set of fixed effects that vary across cities and transport modes are 

calibrated to approximate the share of each mode in each of the 247 urban areas in 2015.  



30  ENV/WKP(2021)7 
 

EXPLORING THE IMPACT OF SHARED MOBILITY SERVICES ON CO2 
Unclassified 

The study compares two scenarios. In a reference scenario, all unobserved factors that are 

responsible for the fact that shared mobility services currently possess a small fraction of 

the modal split in urban areas remain fixed throughout the period 2015-2050. In contrast, a 

counterfactual scenario allows the aforementioned unobserved factors to improve within 

the same period substantially. The findings indicate that such an improvement has an 

important impact on the aggregate urban transport emissions. The former scenario predicts 

a 10.6% reduction in CO2 emissions from urban transport. In the latter scenario, total 

emissions are reduced by 16.9%. The city-by-city analysis indicates that the effect is also 

present at the city level, as improving the underlying conditions at which shared mobility 

services are provided is associated with lower emissions in almost all cities in the sample. 

The accompanying policy implications are elaborated.             

The section is organised in three parts. The first part describes the reference and 

counterfactual scenario, respectively. The second part displays the findings from the 

simulations. The third part discusses the accompanying policy implications. The Annex B 

of the paper offers a series of technical details related to the calibration and forward 

simulation of the model.  

        

Figure 5.1. Distribution of the unobserved factors  

Overall quantified advantages of each mode in the benchmark year (left), terminal year under the 

reference scenario (left) and terminal year under the counterfactual scenario (right) 

 

Note: The left panel displays the cross-city distributions of fixed effects in the benchmark year, i.e. 2015. For 

the reference scenario, these distributions remain fixed across the entire time window of the study (2015-2050). 

The right panel displays the cross-city distributions of fixed effects in the terminal year, i.e. 2050, under the 

counterfactual scenario. The mean shared mobility fixed effect increases by approximately one standard 

deviation. In both panels, the distributed values of fixed effects are expressed as differences from the underlying 

effects associated with soft mobility (bike, walk), which are set to zero. Source: Graph generated by the authors.  

 

Scenarios 

The study examines two scenarios that differ with respect to the assumptions they make 

about the intertemporal evolution of unobserved factors that affect choice of transport 
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modes such as travel cost, time and comfort. For shared mobility, the factors reflect 

technological and institutional barriers that are currently responsible for the low prevalence 

of these services in cities. In the reference scenario, all unobserved factors that determine 

mode choice remain fixed to their values in the benchmark year, i.e. 2015. Thus, their cross-

city distribution remains intact between 2015 and 2050. The left panel of Figure 5.1 

displays these distributions, which are obtained by calibrating the model to fit the observed 

market shares of each transport mode in each of the 247 cities in year 2015.     

In the counterfactual scenario, the unobserved factors that are currently responsible for the 

low market share of shared mobility are allowed to evolve across time in each city. The 

right panel of Figure 5.1 displays the cross-city distribution of the fixed-effect values in 

2050 under the counterfactual scenario. A visual comparison with the left panel reveals that 

the counterfactual scenario keeps the unobserved factors that govern the choice of car and 

public transport fixed, while the shared mobility fixed effects increase by one standard 

deviation from their initial position. This shift takes place between 2015 and 2050 in a 

continuous manner. An intuitive way to interpret the counterfactual scenario is to consider 

a pair of cities, e.g. A and B, with the latter city lying one standard deviation ahead of the 

former in 2015. The scenario assumes that in 2050, shared mobility services in city A will 

resemble those offered in city B back in 2015.     

Simulation results 

The results indicate that a widespread deployment of shared mobility services could have 

a significant effect on the overall emissions of urban passenger transport. Figure 5.2 

displays the evolution of total CO2 emissions, i.e. the aggregate emissions from transport 

in the sample of 247 cities, relative to their initial value in 2015. The difference between 

the two curves represents the isolated impact of overcoming remaining technological 

constraints and institutional barriers that currently hamper a widespread adoption of shared 

mobility. This difference is substantial: while the reference scenario predicts a 10.6% 

reduction in CO2 emissions from urban transport, that reduction is 16.9% in the 

counterfactual scenario.  

Figure 5.2. Evolution of total CO2 emissions from urban transport 

 
Note: The emissions at any time point are expressed relative to the total emissions at year 2015.  

Source: Generated by the authors. 
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The contribution of shared mobility services could be even higher if a series of factors not 

modelled explicitly in this exercise are taken into account. The most important of them is 

that, upon becoming the dominant form of urban transport, shared mobility could also have 

a feedback effect on car ownership. That is, a much sparser use of private cars could 

potentially induce a substantial share of the population to reconsider car ownership. 

Second, a switch to shared mobility would increase the passenger-to-vehicle kilometre 

ratio, as it would allow the utilisation of larger shuttles that deliver more passenger 

kilometres to be undertaken per vehicle kilometre travelled. Finally, the large scale 

adoption of shared mobility services has the potential to reduce congestion, increasing 

average vehicle speeds, reducing gasoline consumption, and reducing travel times.  

Figure 5.3. The impact of mainstreaming shared mobility on CO2 emissions across cities 

Mainstreaming shared mobility could reduce total emissions (left) and average emissions per trip 

(right) in almost every city.  

 

Note: The left (respectively, right) panel displays the change in total CO2 emissions (respectively, average CO2 

emissions per trip) predicted by the reference scenario relative to the corresponding change predicted by the 

counterfactual scenario. Dots below the diagonal 45° line represent cities in which the per se mainstreaming of 

shared mobility services will reduce emissions. Dots within the inner boxes represent cities in which total CO2 

emissions (left panel) or average CO2 emissions per trip (right panel) will be reduced in both scenarios.     

Source: Generated by the authors.  

 

The impact of mainstreaming shared mobility services may vary substantially across cities 

and countries. Figure 5.3 visualises this variation. In both panels of the figure, each circle 

represents a city in any of the sample years used in the simulation, i.e. 2015, 2020, 2030, 

2040 and 2050. The horizontal position of each point reflects the total CO2 emissions (left 

panel) or average CO2 emissions per trip (right panel) relative to their respective values in 

2015, under the reference scenario. Thus, points whose horizontal axis values exceed 100% 

represent cities in which emissions compared to their benchmark levels are expected to 

increase over time. Similarly, the vertical position of each dot embodies the total CO2 
emissions (left panel) or average CO2 emissions per trip (right panel) relative to the 

respective values in 2015, under the counterfactual scenario. Therefore, points that lie 

below the diagonal line represent cities in which mainstreaming of shared mobility services 

per se will have positive impact in reducing the total CO2 emissions (left panel) or average 

CO2 emissions per trip (right panel). The opposite holds for points lying above the diagonal 
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line. Points lying on the diagonal represent cities in which the mainstreaming of shared 

mobility will have an insignificant impact on their CO2 emission profile. Finally, points 

falling within the inner boxes of the two panels represent cities in which total CO2 emissions 

(left panel) or average CO2 emissions per trip (right panel) are expected to decrease 

compared to their values in 2015. Further inspection of the figures provides a series of 

important insights. 

Figure 5.4. The impact of mainstreaming shared mobility on average CO2 per trip 

Impacts displayed by region 

 

Note: Panels display the change in the average CO2 emissions per trip predicted by the reference scenario 

relative to the corresponding change predicted by the counterfactual scenario. Dots below the diagonal 45° line 

represent cities in which the per se mainstreaming of shared mobility services, i.e. the counterfactual scenario, 

will reduce emissions. Points within the inner boxes represent cities in which the average CO2 emissions per 

trip will be reduced in both scenarios.     

Source: Generated by the authors. 

In almost all of the cities in the sample, the average CO2 footprint of a given trip decreases 

under both scenarios. This can be observed in the right panel of Figure 5.3, in which the 

vast majority of the cities fall within the inner box. The result is robust across regions, as 

the accompanying visual inspection of Figure 5.4 suggests. That figure breaks down the 

effect in six different regions. The temporal disaggregation of the analysis indicates that 

the aforementioned reduction is reinforced over time, as the lower panels of Figure 5.6 

suggest. The falling carbon intensity of the average trip can be primarily attributed to three 

factors: the increasing fuel efficiency of vehicles, the expected electrification of a part of 

the private vehicle fleet and the decreasing carbon intensity of electricity generation, which 

powers part of public transport services. 

While the average carbon intensity of a trip has a clear decreasing trend in almost all urban 

areas, the same is not true for the total CO2 emissions from urban transport. The left panel 

of Figure 5.3 shows that in a large number of cities, total CO2 emissions from urban 
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transport are expected to continue increasing to 2050. Furthermore, this occurs under both 

the reference and counterfactual scenarios. Figure 5.5 provides further insights on the 

regional character of this finding. In particular, the cross-region analysis reveals that the 

pattern is relatively stronger in Mexico, Chile and Turkey. A possible explanation is that 

the overall travel demand in urban areas of these countries is expected to increase faster 

than the pace at which an average urban trip is decarbonised. This could be attributed to a 

series of drivers that underlie the growth in travel demand, such as population and income 

growth, which are expected to be high in these countries during the time window of the 

study. The upper panels of Figure 5.6 indicate that the effect does not diminish over time 

(further detail can be found in Figure A C.1. in Annex C). 

Although the mainstreaming of shared mobility does not seem to provide a solution to 

increasing CO2 patterns, it should be part of the effort to decarbonise transport in most of 

the urban areas. This is indicated in all panels of Figure 5.3-Figure 5.5, which indicate that 

shared mobility could assist almost all cities to reduce the CO2 emissions from an average 

trip, as well as their total carbon footprint from passenger transport. Most importantly, that 

holds even in the vast majority of cities in which total transport-related CO2 emissions are 

expected to increase. In line with this, Figure 5.5 shows that almost all of the cities whose 

total transport-related CO2 emissions display an upward trend could benefit from shared 

mobility and substantially curb that trend. In some of the cases, the widespread deployment 

of shared mobility could reverse the trend. That holds particularly for Turkish cities, as well 

as a considerable fraction of European, Chilean and Mexican cities.           

Figure 5.5. The impact of mainstreaming shared mobility on average CO2 per trip 

Impacts displayed by region 

 

Note: All panels display the change in total CO2 emissions predicted by the reference scenario (x-axis) relative 

to the corresponding change predicted by the counterfactual scenario (y-axis). Points below the diagonal 

represent cities in which the per se mainstreaming of shared mobility services will reduce emissions. Dots 

within the inner boxes represent cities in which total CO2 emissions will be reduced in both scenarios 

Source: Generated by the authors. 
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Figure 5.6. The impact of mainstreaming shared mobility on CO2 emissions across time 

 

Note: Upper (respectively, lower) panels display the change in total CO2 emissions (respectively, average CO2 

emissions per trip) predicted by the reference scenario (x-axis) relative to the corresponding change predicted 

by the counterfactual scenario (y-axis). Points below the diagonal represent cities in which the per se 

mainstreaming of shared mobility services will reduce emissions. Points within the inner boxes represent cities 

in which total CO2 emissions (upper panels) or average CO2 emissions per trip (lower panels) will be reduced 

in both scenarios.    

Source: Generated by the authors.  

The difference in CO2 emissions between the reference and counterfactual scenarios stems 

primarily from a change in modal splits. Figure 5.7 displays the evolution of the modal 

splits under the counterfactual scenario over time. The mode share of cars and public 

transport fall with the increased uptake of shared mobility services.  

Figure 5.7. Evolution of the city average modal split over time 
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Note: The average is obtained by weighting the estimated modal split for each city by the share of passenger 

kilometres of that city over the total passenger kilometres in the given year. 

Source: Generated by the authors. 

Figure 5.8. Market shares over the counterfactual scenario 

 

Note: Each observation represents one city in one given year. When the dot lie on the diagonal, the market 

shares are identical in both scenarios. If the dot is above the diagonal, the market share of the mode is larger in 

the counterfactual scenario. Otherwise, the market is smaller in the counterfactual scenario. 

Source: Generated by the authors. 

Shared mobility replaces a larger number of trips from cars than from public transport. 

Figure 5.8 shows that this average effect holds in most cities. This can be seen by the 

considerable number of cities in which the mode share of cars lies between 20% and 60% 

in the reference scenario, but falls to zero in the counterfactual scenario. In contrast, the 

vast majority of points in the “public transport” panel of the figure are concentrated around 

the diagonal line. This implies that in a large fraction of the cities in the sample, the market 

share of public transport is relatively stable across scenarios.   

The initial share of car and public transport in the modal split is an important predictor of 

the emission reductions that shared mobility can generate. Figure 5.9 displays the results 

of a regression conducted to explore the relationship between the initial modal split (in 

2015) and the efficiency ratio of the two scenarios (further detail can be found in Figure A 

C.2. in Annex C). The efficiency ratio expresses CO2 emissions in the counterfactual as a 

fraction of the corresponding emissions in the reference scenario. Thus, values close to zero 

indicate that shared mobility brings relatively large emission reductions. Similarly, values 

close to one indicate that shared mobility does not have significant mitigation potential. 

Finally, values exceeding one indicate that the widespread adoption of shared mobility 

services increases CO2 emissions.  
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The results highlight two aspects that are important when it comes to introducing shared 

mobility services. First, cities in which the mode share of public transport is already high 

do not stand to benefit from shared mobility services. This is because the share of public 

transport in the modal split will fall with the uptake of these services. That will be followed 

by an increase in the carbon footprint of these cities, as the carbon intensity of a passenger-

kilometre undertaken with shared mobility is higher than a corresponding passenger-

kilometre undertaken by public transport. Second, although cities with a high level of 

private car stand to see substantial emissions reductions from shared mobility uptake, car 

dependency itself appears to pose a significant barrier to the uptake of these services in 

these cities. This is indicated by the small efficiency ratio values in cities where the share 

of public transport in the modal split is very low. The exact nature of this apparent inertia 

in mode splits cannot be identified in the context of this study and should be examined on 

a case-by-case basis. 

Figure 5.9. Predicting the relative efficiency of scenarios with the initial modal split. 

 

Note: Each observation represents one city in one given year. The relative efficiency (in the vertical axis) is the 

result of dividing the total CO2 emissions in the reference scenario over the total CO2 emissions in the 

counterfactual. The observations above the grey horizontal line imply that the emissions are larger in the 

counterfactual than in the reference scenario. 

Source: Generated by the authors. 

Policy implications 

The study yields a series of important policy implications. These are related to whether 

shared mobility constitutes, from a social point of view, a cost-effective alternative to 

conventional private and public modes of transport. The implications pertain also the 

degree to which future leverage of relevant urban transport decarbonisation policies should 

rely to these services.  

The finding that a widespread deployment of shared mobility services leads, in almost all 

cases, to a decrease in transport-related CO2 emissions has certain policy implications. The 

most clear of them is that long-run institutional barriers to that deployment that are not 

justified from an economic viewpoint, or contradict other policy objectives, should be 

relaxed or removed altogether. The results indicate that mainstreaming shared mobility is 

highly likely to reduce the use of private car much more than the use of public transport. 

The net environmental effect of shared mobility will therefore be positive, not only in terms 
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of greenhouse gas emissions, but also in the form of reduced tailpipe emissions of air 

pollutants. In addition, these positive effects could extend to other urban externalities that 

result from the excess use of private cars, such as congestion, noise and traffic accidents. 

Furthermore, all findings indicate that shared mobility cannot be considered a stand-alone 

strategy for decarbonising urban transport. The analysis shows that while these services 

have the potential to enhance urban transport decarbonisation, alone they cannot be 

expected to deliver emissions reductions on a massive scale. Perhaps the most striking 

finding of the study is that, despite being significant, the per se contribution of shared 

mobility to reductions of urban transport emissions does not exceed 6.5%. An immediate 

outcome of this finding is that core policies, such as taxes and subsidies, should also target 

other, possibly more effective ways to decarbonise urban transport. 

This holds true particularly for the cities that are highly car-dependent. Most of these cities 

are located in the US, Canada, Australia, and New Zealand, but the findings indicate that 

such areas can also be found in Europe. In these cities, the uptake of shared mobility is 

limited, likely due to strong established preferences for travel by private car. Cities with 

high mode shares of public transit also do not see strong emissions reductions from an 

increased uptake of shared mobility either. The mechanism behind the weak mitigation 

potential of shared mobility in these cities is, however, different than that of cities with 

high private car use. Shared mobility in these contexts is ineffective not because it is not 

adopted, but because it draws users from public transport, which is generally less 

emissions-intensive per passenger-kilometre than travel via shared mobility services.  That 

is, in areas that are well-served by public transport, shared mobility services will inevitably 

attract a considerable share of public transport users, neutralising most of the gains resulting 

from reduced private car use. In both of these cases, policy support for shared mobility that 

bears a non-negligible social cost is not warranted.  
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Annex A. Econometric estimation and results 

Annex A contains additional information concerning the ITF survey data and the results 

from the econometric models. 

Survey data: attribute levels 

Table A A.1. summarizes the attribute levels that could be faced by the individuals during 

the completion of the survey. At the beginning of the survey each individual chose a 

number from 1 to 4, corresponding to a randomization of the survey that leads to a specific 

combination of the attribute levels presented below for each of the four rounds. 

Table A A.1. Attribute levels 

Variable Mode Levels 

Travel time Car 30, 20 

  Shared  Mobility 15, 25 

  Non-motorised 20, 45 

  Public transport 10, 40 

Fuel Cost Car 1.02, 1.06 1.25, 3.11 3.56, 3.70 

Parking Cost Car 0, 2.18, 3.05, 3.17 

Toll Cost Car 0, 1.25, 3.11, 5.08, 12.20, 12.67 

Fare Shared mobility 1.52, 1.58, 1.87, 3.56, 3.70, 4.98 

  Public transport 1.02, 1.06, 1.56, 3.05, 3.17, 3.74 

Waiting time Public transport 5, 20 

Lost time (waiting + detour time) Shared mobility 0, 2, 3, 5, 10, 15 

Accessing time Shared mobility 0, 2, 5, 10, 15 

  Public transport 10, 20 

Number of Passengers Shared mobility 0, 3, 4, 10 

Number of transfers Public transport 0, 1, 3 

Availability of cycle path or sidewalk Non-motorised None available, good. 

Ease of crossing in traffic Non-motorised Pedestrian crossing (regular priority crossing), traffic light 

crossing with pedestrian/bicycle priority button (protected 

and prioritised). 

Congestion level Car Greater than 50% or less than 20% of time stopped in traffic, 

20% to 50% of time stopped in traffic. 

Crowding on board Public transport Part of trip standing, able to choose a seat and standing and 

difficult to move. 

Note: The time is expressed in minutes and the monetary values in $US PPP 2017. 

Source: Authors’ elaboration of ITF survey data. 
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Econometric models estimated coefficients 

Table A A.2. Econometric models estimated coefficients 

  Complete model Complete model WTP 
Reduced model 

Simulations 
Non-motorised -0.622 -0.329 -1.4* 
  (0.681) (0.775) (0.729) 
Bike     -0.434* 
      (0.222) 
Travel time -0.721*** -0.788*** -0.715*** 
  (0.122) (0.11) (0.108) 
Priority crossing + Sidewalk / Cyclepath 0.102 -0.127 0.00427  

(0.285) (0.309) (0.305) 
Age > 65 -1.34** -1.38   
  (0.591) (0.596)   
Female X Bike -1.07*** -1.16***   
  (0.325) (0.321)   
Public transport and Shared mobility   
Travel time  -0.177** -0.185** -0.184** 
  (0.0759) (0.0763) (0.0726) 
Non-in-vehicle time -0.228** -0.294*** -0.275*** 
  (0.11) (0.109) (0.106) 
Fare -0.222*** -0.214*** -0.232*** 
  (0.0688) (0.0691) (0.0656) 
Public transport -1.62** -1.55** -2.07*** 
  (0.752) (0.772) (0.675) 
Bus 0.673** 0.678** 0.467* 
  (0.286) (0.283) (0.259) 
Need to stand for at least part of the trip -0.926*** -0.942*** -0.839*** 
  (0.309) (0.315) (0.293) 
Number of transfers -0.303* -0.261 -0.223  

(0.165) (0.165) (0.157) 
Age 26-45 -0.449* -0.453*   
  (0.235) (0.234)   
Unemployed 0.755*** 0.709**   
  (0.29) (0.288)   
No car in the household 0.568* 0.573*    

(0.293) (0.293)   
Shared mobility -0.638 -0.537 -1.16** 
  (0.576) (0.593) (0.54) 
Number of passengers -0.0696*** -0.0691*** -0.0528**  

(0.0235) (0.0233) (0.0225) 
Dublin -0.587*** -0.57***   
  (0.178) (0.177)   
Female 0.377** 0.365**   
  (0.165) (0.164)   
Unemployed 0.54** 0.509**   
  (0.215) (0.213)   
Car       
Travel time -0.562*** -0.605*** -0.607*** 
  (0.196) (0.197) (0.183) 
Fuel cost + Tolls -0.175***     
  (0.0404)     
Parking cost -0.405***     
  (0.0682)     
Fuel + Parking + Tolls cost   -0.227*** -0.274***  

  (0.0406) (0.0378) 
20 to 50% travel time stopped -0.461** -0.394* -0.397**  

(0.218) (0.211) (0.19) 
Age < 26 -1.32*** -1.27   
  (0.344) (0.332)   
More than 1 car in the household 0.822*** 0.797***    

(0.168) (0.166)   
No car in the household -2.35*** -2.3***    

(0.534) (0.532)   
Far from the city centre 0.701*** 0.669***    

(0.172) (0.17)   

Note: *, **, and *** represent significance levels of p < 0.10, p < 0.05, and p < 0.01, respectively. 

Source: Authors’ estimations from ITF data. 
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Willingness to pay  

The willingness-to-pay (WTP) is a measure of the monetary value individuals assign to an 

additional unit of a particular attribute.7 Negative estimates could be interpreted as 

willingness-to-accept and reflect the amount that people would require to accept an increase 

in the unit of the attribute being evaluated. 

Table A A.3 reports WTP estimates using the coefficients estimated by the WTP model, 

i.e. the model that estimates a joint parameter to reflect the impact of fuel, toll and parking 

costs on the utility obtained from choosing car travel. 

Table A A.3. Estimates of the willingness to pay. 

  Car Public transit Shared mobility 

Travel time (EUR/hour) 16.01764 5.17099 5.17099 

Accessing time (EUR/hour) - 8.23843 8.23842 

Number of transfers   1.21798 
 

Number of other passengers - - 0.32274 

Standing (at least part of the time) - 4.3986 - 

Medium congestion (stopped for 20-50% of in-vehicle time) 1.7360 - - 

Note: WTP estimates are denominated in EUR PPP 2018. Estimates of the travel time and accessing time for 

public transport and shared mobility the same because the coefficients for these variables are assumed to be the 

same as long as the differing factors are included in the model. 

The valuation of accessing time is, however, significantly higher than the valuation of 

travel time for public transit and shared mobility. This implies that respondents prefer a 

longer amount of in-vehicle time over spending more time accessing the vehicle. The latter 

finding is in line with earlier contributions (Abrantes and Wardman, 2011[19]) (Wardman 

and Whelan, 2011[20]). Respondents are also willing to pay at least one extra euro per trip 

in order to avoid having to make an additional transfer in public transport. Finally, 

crowdedness appears less desirable in public transport than in shared modes, as the need to 

stand during the travel time makes public transport significantly less appealing. 

                                                      
7 Willingness-to-pay is calculated by dividing the coefficient of the attribute of interest for a 

particular mode by the cost coefficient for that mode. Hence the need to estimate a single cost 

coefficient for the costs of car use in the WTP model. 
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Annex B. Technical notes 

Annex B contains technical information complementing Section 3. 

Derivatives and elasticities used in the study 

The policy analysis in Section 4 relies on own- and cross-elasticities regarding the 

probability of choosing shared mobility. The derivative of the choice probability of mode 

𝑖 with respect to a change in an explanatory variable entering its own utility in (1), i.e. 𝑥𝑟𝑖, 
is given by: 

 𝜕𝑃𝑛𝑟𝑖
𝜕𝑥𝑟𝑖

= 𝛽𝑖𝑥  𝑃𝑛𝑟𝑖 (1 − 𝑃𝑛𝑟𝑖). 
(TA.1) 

Since equation (1) is linear in parameters and control variables, 𝛽𝑖𝑥 reflects the additional 

utility derived from a marginal increase of the explanatory variable 𝑥𝑡𝑖. For example, 

(TA.1) can be used to compute the change in the probability of choosing shared mobility if 

the cost of it (𝑥𝑡𝑖) increases by a small amount. Similarly, equation (2) can be used to 

calculate the derivative of the choice probability of mode 𝑖 with respect to a change in an 

explanatory variable entering the utility of another transport mode in (1), i.e. 𝑥𝑟𝑗. That is: 

 𝜕𝑃𝑛𝑟𝑖
𝜕𝑥𝑟𝑗

= −𝛽𝑗𝑥 𝑃𝑛𝑟𝑖 𝑃𝑛𝑟𝑗. 
(TA.2) 

For example, (TA.2) could yield the change in the probability of choosing shared mobility 

if the cost of another mode (𝑥𝑡𝑖) increases by a small amount. Equations (TA.1) and (TA.2) 

can be used to calculate the associated point own- and cross-elasticities of the choice 

probabilities. For a given observation (𝑛, 𝑡), these elasticities with respect to the mode of 

interest 𝑖 and alternative mode 𝑗 are, respectively: 

 ℇ𝑖,𝑥𝑡𝑖 = 𝛽𝑖𝑥  𝑥𝑡𝑖 (1 − 𝑃𝑛𝑡𝑖), (TA.3) 

and 

 ℇ𝑖,𝑥𝑡𝑗 = −𝛽𝑗𝑥 𝑥𝑡𝑗 𝑃𝑛𝑡𝑗. (TA.4) 

The study reports the average own and cross elasticities, which are given, respectively, by: 

 
ℇ𝑖,𝑥𝑡𝑖
̅̅ ̅̅ ̅̅ =

1

𝑁𝑆
𝛽𝑖𝑥∑(∑𝑥𝑡𝑖 (1 − 𝑃𝑛𝑡𝑖)

𝑡

)

𝑛

 , 
(TA.5) 

and 

 
ℇ𝑖,𝑥𝑡𝑗
̅̅ ̅̅ ̅̅ = −

1

𝑁𝑆
𝛽𝑗𝑥∑(∑𝑥𝑡𝑗 𝑃𝑛𝑡𝑗

𝑡

)

𝑛

. 
(TA.6) 
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In equations (TA.5) and (TA.6), 𝑁𝑆 denotes the size of the survey sample, which is 840 

observations. This number is the product of the 210 individuals participating in the survey 

and the four responses each individual provides. The study also reports the own and cross 

elasticity at the sample mean. Denoting the average value of variables 𝑥𝑟𝑖 and 𝑥𝑟𝑗 by 𝑥𝑟𝑖̅̅ ̅̅  

and 𝑥𝑟𝑗̅̅ ̅̅  respectively, these elasticities are: 

 ℇ𝑖,𝑥𝑡𝑖
𝑀 = 𝛽𝑖𝑥𝑥𝑡𝑖̅̅̅̅  𝑃𝑛𝑡𝑖̂  , (TA.7) 

and 

 ℇ𝑖,𝑥𝑡𝑖
𝑀 = −𝛽𝑗𝑥 𝑥𝑡𝑗̅̅ ̅̅  𝑃𝑛𝑡𝑗̂  , (TA.8) 

respectively, where 𝑃𝑛𝑡𝑖̂  and 𝑃𝑛𝑡𝑗̂  are the choice probabilities of mode 𝑖 and 𝑗 calculated at 

the sample mean. 

Maximum likelihood estimation 

The parameters in the choice model in equations (1) and (2) i.e. the vectors 𝛂,𝛃, and 𝐴𝑛 

are estimated using maximum likelihood estimation (MLE). The likelihood function is:  

ℓ =∏(∏(∏(𝑃𝑛𝑟𝑖
𝑦𝑛𝑟𝑖)

𝑖

)

𝑟

)

𝑛

 , 
(TA.11) 

where 𝑦𝑛𝑟𝑖 equals one if the respondent 𝑛 chooses transport mode 𝑖 for hypothetical trip 𝑟 

and zero otherwise. Taking the logarithm of ℓ yields the log-likelihood function: 

𝐿(𝛂, 𝛃, 𝐴𝑛) =∑(∑(∑ (𝑦𝑛𝑟𝑖 𝑙𝑜𝑔(𝑃𝑛𝑟𝑖(𝐗𝑟, 𝐒𝑛|𝛂, 𝛃, 𝐴𝑛)))

𝑖

)

𝑟

)

𝑛

. 
(TA.12) 

Maximum likelihood estimation adjusts the values of the parameter vectors 𝛂 and 𝛃 so as 

to maximise the expression in (TA.12) given the observations (𝐗𝑟, 𝐒𝑛, 𝑦𝑛𝑟𝑖).  

From estimation to cross-city simulation: practical considerations   

The underlying transport mode choice model that corresponds to the choice probability (of 

choosing mode 𝑖 in city 𝑐 for trip 𝑟 in year 𝑡) in equation (4) is: 

𝑈𝑐𝑟𝑖𝑡 = 𝛺𝑖𝑐𝑡 + 𝐱𝑟𝑐𝑖�̂�𝑖 +𝜔𝑖𝑐𝑡𝑟, (TA.13) 

where �̂� is the econometrically estimated vector of parameters corresponding to travel time, 

travel cost and trip conditions. Unlike equation (1), the expression in (TA.13) does not 

contain socioeconomic control variables. Furthermore, equation (TA.13) is computed for 

cities that are different than the three cities in which survey data are collected to estimate 

vector 𝛃, i.e. Auckland, Dublin and Helsinki. As a result, the estimated fixed effects in that 

model, �̂�, do not capture the average utility of unobserved factors in the sample of cities 

used in the simulation exercise. As such, the estimated �̂� will not be sufficient to reproduce 

the market share of each transport mode in each city. To overcome these limitations, the 

simulation model replaces �̂�, which vary only across modes and socioeconomic groups, 

with the term 𝛺𝑖𝑐𝑡. The latter is calibrated so that in the benchmark year the expected 
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probability of choosing transport mode 𝑖 in city 𝑐, weighted by the relative frequency of 

trips, is equal to the modal share. That is: 

 
∑(𝜋𝑟𝑐0

𝑒𝑥𝑝(�̂�𝑖𝑐0 + 𝐱𝑟𝑐𝑖�̂�𝑖)

∑ (𝑒𝑥𝑝(�̂�𝑗𝑐0 + 𝐱𝑟𝑐𝑗�̂�𝑗))𝑗

)

𝑟⏟                        
𝐰𝐞𝐢𝐠𝐡𝐭𝐞𝐝 𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐨𝐟 𝐦𝐨𝐝𝐞 𝑖 𝐢𝐧 𝐜𝐢𝐭𝐲 𝑐 

𝐚𝐭 𝐭𝐡𝐞 𝐛𝐞𝐧𝐜𝐡𝐦𝐚𝐫𝐤 𝐲𝐞𝐚𝐫 𝑡 = 0

= �̂�𝑖𝑐0, 

(TA.14) 

where i.e. 𝑡 = 0 denotes the benchmark year and 𝜋𝑟𝑐0 is the relative frequency of trip 𝑟 in 

city 𝑐. In (TA.14), �̂�𝑖𝑐0 is the calibrated specific constant (i.e. fixed effect) for mode 𝑖 and 

city 𝑐 at 𝑡 = 0 and �̂�𝑖𝑐0 is the target choice probability. This probability is provided via the 

ITF global urban transport model and is used as the best available proxy for the actual share 

of transport mode 𝑖 in city 𝑐 at the benchmark year.       

Calibration 

The model used to project emissions, presented in detail in Section 3, is: 

 𝐸𝑐𝑡 = 𝑇𝑐𝑡 ∑

(

 
 
 
 
 

𝜋𝑟𝑐𝑡 ∑

(

  
 
D𝑟 𝑃𝑐𝑟𝑗𝑡(𝐱𝑟𝑗𝑐; �̂�𝑗, 𝛺𝑗𝑐𝑡)

e𝑐𝑗𝑡

L𝑐𝑗𝑡⏟                
𝐜𝐚𝐫𝐛𝐨𝐧 𝐟𝐨𝐨𝐭𝐩𝐫𝐢𝐧𝐭 𝐨𝐟 𝐭𝐫𝐢𝐩 𝑟 

𝐰𝐢𝐭𝐡 𝐦𝐨𝐝𝐞 𝑗 𝐢𝐧 𝐜𝐢𝐭𝐲 𝑐 𝐚𝐭 𝐲𝐞𝐚𝐫 𝑡 )

  
 

𝑗

⏟                        
𝐜𝐚𝐫𝐛𝐨𝐧 𝐟𝐨𝐨𝐭𝐩𝐫𝐢𝐧𝐭 𝐨𝐟 𝐭𝐫𝐢𝐩 𝑟 𝐢𝐧 𝐜𝐢𝐭𝐲 𝑐 𝐚𝐭 𝐲𝐞𝐚𝐫 𝑡 )

 
 
 
 
 

𝑟

⏟                            
𝐜𝐚𝐫𝐛𝐨𝐧 𝐟𝐨𝐨𝐭𝐩𝐫𝐢𝐧𝐭 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐚𝐯𝐞𝐫𝐚𝐠𝐞 𝐭𝐫𝐢𝐩 𝐢𝐧 𝐜𝐢𝐭𝐲 𝑐 𝐚𝐭 𝐲𝐞𝐚𝐫 𝑡

. 

(TA.15) 

The model contains a series of parameters (�̂�, 𝜴) that govern individual behaviour, in 

particular the probability that a transport mode is selected in any given year and city for a 

given type of trip. The latter probability is given by the formula:  

𝑃𝑐𝑟𝑖𝑡(𝐱𝑟𝑐; �̂�𝑗, 𝛺𝑖𝑐𝑡) =
𝑒𝑥𝑝(𝛺𝑖𝑐𝑡 + 𝐱𝑟𝑐𝑖�̂�𝑖)

∑ (𝑒𝑥𝑝(𝛺𝑗𝑐𝑡 + 𝐱𝑟𝑐𝑗�̂�𝑗))𝑗

, 
(TA.16) 

where �̂�𝑗 is the vector of individual behaviour parameters that determine the systematic 

utility of using mode 𝑗 to make a trip 𝑟 in city 𝑐. The latest trip has a set of characteristics 

that are quantified in the vector 𝐱𝑟𝑐𝑗. Parameters �̂� are directly imported using the 

econometric estimates obtained with survey data for Auckland, Dublin and Helsinki. The 

methods used to estimate these parameters are described in detail above.  

Parameters 𝜴 represent fixed effects that vary by year, city and transport mode. In the 

context of this study, 𝛺𝑖𝑐𝑡 is the average utility from unobserved factors that are specific to 

the transport mode, but vary across cities and years. Importing the estimated alternative-

specific constants reported in Annex A is not legitimate, since those values are confined to 

Auckland, Dublin and Helsinki. Instead, parameters 𝜴 are calibrated in order to reproduce 

the observed market share of each transport mode, in each city in the benchmark year of 

the study. Denoting that by 𝑡 = 0, the calibration exercise computes the values of the 
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alternative-specific vector 𝜴𝑐0 that minimizes the following objective function, separately 

for each city:        

𝐹𝑐0(𝜴𝑐0) = √∑(𝑃𝑐𝑖0
𝑀 (𝜴𝑐0) − 𝑃𝑐𝑖0

𝐷 )
2
.

𝑖

2
 (TA.17) 

In equation (TA.17) 𝑃𝑐𝑖0
𝐷  denotes the observed share of transport mode 𝑖 in city 𝑐 at the 

benchmark year, while 𝑃𝑐𝑖0
𝑀 (𝜴𝑐0) is the corresponding share predicted by the model for a 

set of mode-specific constants 𝜴𝑐0 = (𝛺𝐵𝑊𝑐0, 𝛺𝐶𝑐0, 𝛺𝑃𝑇𝑐0, 𝛺𝑆𝑀𝑐0). This model prediction 

is given by:  

𝑃𝑐𝑖0
𝑀 (𝜴𝑐0) =∑

(

 
 
 
 

𝜋𝑟𝑐0
𝑒𝑥𝑝(𝛺𝑖𝑐0 + 𝐱𝑟𝑐𝑖�̂�𝑖)

∑ (𝑒𝑥𝑝(𝛺𝑗𝑐0 + 𝐱𝑟𝑐𝑗�̂�𝑗))𝑗⏟                
𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐭𝐡𝐚𝐭 𝐦𝐨𝐝𝐞 𝑖 𝐢𝐬 𝐜𝐡𝐨𝐬𝐞𝐧

𝐟𝐨𝐫 𝐭𝐫𝐢𝐩 𝑟 𝐢𝐧 𝐜𝐢𝐭𝐲 𝑐 𝐚𝐭 𝐛𝐞𝐧𝐜𝐡𝐦𝐚𝐫𝐤 𝐲𝐞𝐚𝐫)

 
 
 
 

𝑟

⏟                          
𝐰𝐞𝐢𝐠𝐡𝐭𝐞𝐝 𝐜𝐡𝐨𝐢𝐜𝐞 𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐨𝐟 𝐦𝐨𝐝𝐞 𝑖 𝐢𝐧 𝐜𝐢𝐭𝐲 𝑐

𝐚𝐭 𝐛𝐞𝐧𝐜𝐡𝐦𝐚𝐫𝐤 𝐲𝐞𝐚𝐫

. 
(TA.18) 

The optimal values for each city are rescaled in the standard way applying to discrete choice 

models, i.e. as: 

𝜴𝑐0
∗ = (0, 𝛺𝐶,𝑐0

∗ − 𝛺𝐵𝑊,𝑐0
∗ , 𝛺𝑃𝑇,𝑐0

∗ − 𝛺𝐵𝑊,𝑐0
∗ , 𝛺𝑆𝑀,𝑐0

∗ − 𝛺𝐵𝑊,𝑐0
∗ ). (TA.19) 

The cross-city distribution of the above parameters is displayed in Figure 5.1.   
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Annex C. Supplementary information  

Additional notes on the ITF Global Urban Passenger Model framework 

The ITF global urban passenger transport model is designed as a Systems Dynamic model 

(stock and flow model). It can be used to project urban mobility in all cities of over 50000 

inhabitants around the world. The model focuses on 1692 cities that UN Habitat classified 

as having over 300000 inhabitants in 2015. It also incorporates 9660 cities with populations 

between 50000 and 300000 inhabitants.  

The model contains a detailed classification of transport modes that range from 

conventional private cars, public transport and new emerging alternatives of shared 

mobility. The availability of these modes, fleet sizes, and pricing levels in each city are 

surveyed for the base year. A rule-based procedure is then used to simulate how new 

transport modes evolve given the local context. The main variables informing these rules 

are the geographic region in which the city is located, its population, and the income level 

of its inhabitants. Therefore, the projected values of population and income are indirectly 

used to project important attributes of transport modes.  

Cross-city variation in such socio-economic characteristics, e.g. income and population, 

are exogenous to the model. Projections of GDP are obtained at the national level separately 

for each country, using OECD data. GDP growth is assumed to be uniform within cities in 

each country. The model uses data from the UN World Urbanization Prospects 2014 to 

project urban population. 

The rest of the model’s key input variables evolve every five years. The evolution of these 

variables varies by region and follows specific rules, which are based on the following 

assumptions. Land use evolves according to scenarios. These range from a business-as-

usual scenario, in which population density is fixed, to scenarios that increase sprawl or 

generate densification. For the two last scenarios, the 25th percentile and 75th percentiles of 

the region’s population density are use as density thresholds. The analysis presented in this 

paper relies on a business-as-usual land use scenario. The size of the private vehicle fleet, 

which contains cars, motorbikes and bicycles is projected for each city using a calibrated 

ownership model. Road and public transport infrastructure and supply of transport services 

evolve according to country-specific scenarios. This paper considers a business-as-usual 

scenario for the development of roads and public transport infrastructure. Vehicle load 

factors, energy prices and fuel efficiency evolve in each country according to the Mobility 

Model developed by the IEA.  
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Table A C.1. Summary of data sources used in the calibration of the ITF global urban 

passenger model 

Name Description Source 

City List 

  Full list of cities with population above 

300k by 2014  

UN Habitat, WUP2014 

Mode Shares 

  Percentage of trips (all purposes) by 

different type of modes 

Various sources 

  Main Source The EPOMM Modal Split Tool - 

http://www.epomm.eu/tems/result_cities.phtml?more=1 

  Other miscellaneous sources National Household Travel Survey 

  
 

Statistic year books 

  
 

Reports from local transport authorities 

    Reports from different research institutes and organizations 

    UITP, Mobility in Cities Database 

Transport Supply 

  Global road network OpenStreetMap, https://www.openstreetmap.org/ 

  Global public transport network OpenStreetMap, https://www.openstreetmap.org/ 

  Mobility in Cities Database UITP 

  World metro database http://mic-ro.com/metro/table.html  

  Rapid transit database ITDP 

Urban Built-up Areas 

  BUREF - Global Built-up Reference 

Layer (BUREF2010) is a spatial raster 

dataset containing an estimation of the 

distribution and density of built-up areas 

using publicly available global spatial 

data related to the year 2010 

European Commission, Joint Research Centre, 

http://publications.jrc.ec.europa.eu/repository/handle/JRC90459 

  LANDSAT - Landsat represents the 

world's longest continuously acquired 

collection of space-based moderate-

resolution land remote sensing data. 

A joint initiative between the U.S. Geological Survey (USGS) and 

NASA, http://landsat.usgs.gov//about_project_descriptions.php 

Population 

  Total population, urban population by 

country, cities with population above 

300K 

UN Habitat, WUP2014 

GDP 

  GDP, GDP per capita projection by 

country 

OECD ECO department 

  GDP by cell grid in 2010 LANDSAT 

Car Ownership 

  Passenger Cars per 1000 inhabitant by 

country 

World Bank,  http://data.worldbank.org/indicator/IS.VEH.NVEH.P3, 

accessed on 2015-03-12 

Transport Prices 

  Transportation prices by city, e.g. 

gasoline per litre, monthly pass, one-

way transit ticket, taxi per hour etc. 

NUMBEO, open source, http://www.numbeo.com/cost-of-

living/prices_by_city.jsp 

Source: ITF. 

https://www.openstreetmap.org/
https://www.openstreetmap.org/
http://mic-ro.com/metro/table.html
http://publications.jrc.ec.europa.eu/repository/handle/JRC90459
http://landsat.usgs.gov/about_project_descriptions.php
http://data.worldbank.org/indicator/IS.VEH.NVEH.P3
http://www.numbeo.com/cost-of-living/prices_by_city.jsp
http://www.numbeo.com/cost-of-living/prices_by_city.jsp
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Simulation results: supplementary figures 

Figure A C.1. The impact of mainstreaming shared mobility on CO2 emissions across time – 

City examples 

 

Note: Panels 1-2 correspond to the year 2020, 3-4 to 2030, 5- 6 to 2040, and 7-8 to 2050. Odd (respectively, 

even) panels display the change in total CO2 emissions (respectively, average CO2 emissions per trip) predicted 

by the reference scenario (x-axis) relative to the corresponding change predicted by the counterfactual scenario 

(y-axis). Points below the diagonal represent cities in which the per se mainstreaming of shared mobility 

services will reduce emissions. Points within the inner boxes represent cities in which total CO2 emissions 

(upper panels) or average CO2 emissions per trip (lower panels) will be reduced in both scenarios.    

Source: Generated by the authors. 
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Figure A C.2. Predicting the relative efficiency of scenarios with the initial modal split - 

Evolution over time 

 

Source: Generated by the authors. 
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