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Abstract 

Recent years have seen impressive advances in artificial intelligence (AI) and this has stoked renewed 

concern about the impact of technological progress on the labour market, including on worker 

displacement.  

This paper looks at the possible links between AI and employment in a cross-country context. It adapts the 

AI occupational impact measure developed by Felten, Raj and Seamans (2018[1]; 2019[2]) – an indicator 

measuring the degree to which occupations rely on abilities in which AI has made the most progress – and 

extends it to 23 OECD countries. The indicator, which allows for variations in AI exposure across 

occupations, as well as within occupations and across countries, is then matched to Labour Force Surveys, 

to analyse the relationship with employment.  

Over the period 2012-2019, employment grew in nearly all occupations analysed. Overall, there appears 

to be no clear relationship between AI exposure and employment growth. However, in occupations where 

computer use is high, greater exposure to AI is linked to higher employment growth. The paper also finds 

suggestive evidence of a negative relationship between AI exposure and growth in average hours worked 

among occupations where computer use is low.  

While further research is needed to identify the exact mechanisms driving these results, one possible 

explanation is that partial automation by AI increases productivity directly as well as by shifting the task 

composition of occupations towards higher value-added tasks. This increase in labour productivity and 

output counteracts the direct displacement effect of automation through AI for workers with good digital 

skills, who may find it easier to use AI effectively and shift to non-automatable, higher-value added tasks 

within their occupations. The opposite could be true for workers with poor digital skills, who may not be 

able to interact efficiently with AI and thus reap all potential benefits of the technology. 
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Résumé 

Ces dernières années, l'intelligence artificielle (IA) a fait des progrès considérables, suscitant un regain 

d’inquiétude quant à l'impact du progrès technologique sur le marché du travail, et en particulier sur les 

suppressions d’emplois. 

Cette étude examine les liens possibles entre l'IA et l'emploi dans un contexte transnational. Il adapte la 

mesure de l'impact de l'IA sur les professions développée par Felten, Raj et Seamans (2018[1]; 2019[2]) - 

un indicateur mesurant le degré auquel les professions reposent sur des capacités dans lesquelles l'IA a 

le plus progressé - et l'étend à 23 pays de l'OCDE. L'indicateur, qui permet de tenir compte des variations 

de l'exposition à l'IA entre les professions, ainsi qu'au sein des professions et entre les pays, est ensuite 

mis en correspondance avec les enquêtes sur les forces de travail, afin d'analyser la relation avec l'emploi.  

Sur la période 2012-2019, l'emploi a augmenté dans presque toutes les professions analysées. 

Globalement, il ne semble pas y avoir de relation claire entre l'exposition à l'IA et la croissance de l'emploi. 

Toutefois, dans les professions où l’informatisation est élevée, une plus grande exposition à l'IA est liée à 

une plus forte croissance de l'emploi. L'étude met également en avant des éléments qui suggèrent une 

relation négative entre l'exposition à l'IA et la croissance du nombre moyen d'heures travaillées dans les 

professions où l’informatisation est faible.  

Bien que des recherches supplémentaires soient nécessaires afin d’identifier avec exactitude les 

mécanismes qui sous-tendent ces résultats, une explication possible est que l'automatisation partielle 

induite par l'IA augmente la productivité directement ainsi qu'en déplaçant la composition des tâches au 

sein des professions vers des tâches à plus forte valeur ajoutée. Cette augmentation de la productivité du 

travail et de la production contrebalance l'effet de déplacement direct de l'automatisation par l'IA pour les 

travailleurs ayant de bonnes compétences numériques, qui peuvent avoir plus de facilité à utiliser 

efficacement l'IA et à s’orienter vers des tâches non automatisables à plus forte valeur ajoutée. Cela 

pourrait être l’inverse pour les travailleurs ayant de faibles compétences numériques, qui pourraient ne 

pas être en mesure d'interagir efficacement avec l'IA et donc de profiter de tous les bienfaits potentiels de 

la technologie.  
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Abriss 

Der Bereich der künstlichen Intelligenz (KI) hat sich in den letzten Jahren enorm weiterentwickelt, was 

neue Bedenken hinsichtlich des technologischen Fortschritts auf dem Arbeitsmarkt einschließlich dem 

Verlust von Arbeitsplätzen entfachte.  

Im vorliegenden Beitrag werden die möglichen Zusammenhänge zwischen KI und Beschäftigung 

länderübergreifend beleuchtet. Die von Felten, Raj und Seamans (2018[1]; 2019[2]) entwickelte Grad des 

Ausgesetztseins von Berufen gegenüber KI– ein Indikator, der misst, inwieweit Berufe von Fähigkeiten 

abhängen, bei denen die KI schon weit fortgeschritten ist – wird dabei angepasst und auf 23 OECD-Länder 

ausgeweitet. Der Indikator, der je nach Beruf, aber auch innerhalb von Berufen und je nach Land 

unterschiedliche KI-Potenziale annehmen kann, wird mit Arbeitskräfteerhebungen zusammengeführt, um 

den Zusammenhang zwischen KI und Beschäftigung zu analysieren.  

Im Zeitraum 2012–2019 ist die Beschäftigung in nahezu allen untersuchten Berufen gestiegen. Insgesamt 

scheint es keinen eindeutigen Zusammenhang zwischen dem Grad des KI-Ausgesetztseins und dem 

Beschäftigungszuwachs je nach Beruf zu geben. Bei Berufen mit starkem Computereinsatz ist ein 

größeres KI-Ausgesetztsein allerdings mit einem stärkeren Beschäftigungszuwachs verbunden. 

Gleichzeitig scheint es bei Berufen mit geringem Computereinsatz Hinweise auf eine negative Korrelation 

zwischen KI-Ausgesetztsein und dem Wachstum durchschnittlich geleisteter Arbeitsstunden zu geben.  

Die genauen Mechanismen, die diesen Ergebnissen zugrunde liegen, müssen zwar noch weiter erforscht 

werden, eine mögliche Erklärung könnte aber sein, dass eine teilweise Automatisierung durch KI zu einer 

direkten Produktivitätssteigerung führt. Zusätzlich könnte KI dazu führen, dass die 

Aufgabenzusammensetzung eines Berufs sich hin zu Aufgaben mit höherer Wertschöpfung verändert. 

Diese Steigerung bei der Arbeitsproduktivität wirkt der direkten Substitution von Arbeit durch KI bei 

Beschäftigten mit guten digitalen Kompetenzen, die es möglicherweise leichter finden, die KI wirksam 

einzusetzen und innerhalb ihres Berufs zu nicht automatisierbaren Aufgaben mit höherer Wertschöpfung 

zu wechseln, entgegen. Bei Beschäftigten mit geringen digitalen Kompetenzen, die möglicherweise nicht 

in der Lage sind, KI effizient einzusetzen und dadurch alle potenziellen Vorteile der Technologie zu nutzen, 

könnte sich hingegen das Gegenteil erweisen. 
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Recent years have seen impressive advances in Artificial Intelligence (AI), particularly in the areas of image 

and speech recognition, natural language processing, translation, reading comprehension, computer 

programming and predictive analytics.  

This rapid progress has been accompanied by concern about the possible effects of AI deployment on the 

labour market, including on worker displacement. There are reasons to believe that its impact on 

employment may be different from previous waves of technological progress. Autor, Levy and Murnane 

(2003[3]) postulated that jobs consist of routine (and thus in principle programmable) and non-routine tasks. 

Previous waves of technological progress were primarily associated with the automation of routine tasks. 

Computers, for example, are capable of performing routine cognitive tasks including record-keeping, 

calculation, and searching for information. Similarly, industrial robots are programmable manipulators of 

physical objects and therefore associated with the automation of routine manual tasks such as welding, 

painting or packaging (Raj and Seamans, 2019[4]).1 These technologies therefore mainly substitute for 

workers in low- and middle-skill occupations.  

Tasks typically associated with high-skilled occupations, such as non-routine manual tasks (requiring 

dexterity) and non-routine cognitive tasks (requiring abstract reasoning, creativity, and social intelligence) 

were previously thought to be outside the scope of automation (Autor, Levy and Murnane, 2003[3]; 

Acemoglu and Restrepo, 2020[5]).  

However, recent advances in AI mean that non-routine cognitive tasks can also increasingly be automated 

(Lane and Saint-Martin, 2021[6]). In most of its current applications, AI refers to computer software that 

relies on highly sophisticated algorithmic techniques to find patterns in data and make predictions about 

the future. Analysis of patent texts suggests AI is capable of formulating medical prognosis and suggesting 

treatment, detecting cancer and identifying fraud (Webb, 2020[7]). Thus, in contrast to previous waves of 

automation, AI might disproportionally affect high-skilled workers.  

Even if AI automates non-routine, cognitive tasks, this does not necessarily mean that AI will displace 

workers. In general, technological progress improves labour efficiency by (partially) taking over/speeding 

up tasks performed by workers. This leads to an increase in output per effective labour input and a 

reduction in production costs. The employment effects of this process are ex-ante ambiguous: employment 

may fall as tasks are automated (substitution effect). On the other hand, lower production costs may 

increase output if there is sufficient demand for the good/service (productivity effect).2 

                                                
1 AI may however be used in robotics (“smart robots”), which blurs the line between the two technologies (Raj and 

Seamans, 2019[4])). For example, AI has improved the vision of robots, enabling them to identify and sort unorganised 

objects such as harvested fruit. AI can also be used to transfer knowledge between robots, such as the layout of 

hospital rooms between cleaning robots (Nolan, 2021[22]).  

2 This can only be the case if an occupation is only partially automated, but depending on the price elasticity of demand 

for a given product or service, the productivity effect can be strong. For example, during the 19 th century, 98% of the 

tasks required to weave fabric were automated, decreasing the price of fabric. Because of highly price elastic demand 

for fabric, the demand for fabric increased as did the number of weavers (Bessen, 2016[20]).  

1.  Introduction  
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To harness this productivity effect, workers need to both learn to work effectively with the new technology 

and to adapt to a changing task composition that puts more emphasis on tasks that AI cannot yet perform. 

Such adaptation is costly and the cost will depend on worker characteristics.  

The areas where AI is currently making the most progress are associated with non-routine, cognitive tasks 

often performed by medium- to high-skilled, white collar workers. However, these workers also rely more 

than other workers on abilities AI does not currently possess, such as inductive reasoning or social 

intelligence. Moreover, highly educated workers often find it easier to adapt to new technologies because 

they are more likely to already work with digital technologies and participate more in training, which puts 

them in a better position than lower-skilled workers to reap the potential benefits of AI. That being said, 

more educated workers also tend to have more task-specific human capital,3 which might make adaption 

more costly for them (Fossen and Sorgner, 2019[8]).  

As AI is a relatively new technology, there is little empirical evidence on its effect on the labour market to 

date. The literature that does exist is mostly limited to the US and finds little evidence for AI-driven worker 

displacement (Lane and Saint-Martin, 2021[6]). Felten, Raj and Seamans (2019[2]) look at the effect of 

exposure to AI4 on employment and wages in the US at the occupational level. They do not find any link 

between AI exposure and (aggregate) employment, but they do find a positive effect of AI exposure on 

wage growth, suggesting that the productivity effect of AI may outweigh the substitution effect. This effect 

on wage growth is concentrated in occupations that require software skills and in high-wage occupations. 

Again for the US, Fossen and Sorgner (2019[8]) look at the effect of exposure to AI5 on job stability and 

wage growth at the individual level. They find that exposure to AI leads to higher employment stability and 

higher wages, and that this effect is stronger for higher educated and more experienced workers, again 

indicating that the productivity effect dominates and that it is stronger for high-skilled workers.  

Finally, Acemoglu, Autor and Hazell (2020[9]) look at hiring in US firms with task structures compatible with 

AI capabilities.6 They find that firms’ exposure to AI is linked to changes in the structure of skills that firms 

demand. They find no evidence of employment effects at the occupational level, but they do find that firms 

that are exposed to AI restrict their hiring in non-AI positions compared to other firms. They conclude that 

the employment effect of AI might still be too small to be detected in aggregate data (given also how recent 

a phenomenon AI is), but that it might emerge in the future as AI adoption spreads.  

                                                
3 Education directly increases task-specific human capital as well as the rate of learning-by-doing on the job, at least 

some of which is task-specific (Gibbons and Waldman, 2004[40]; Gibbons and Waldman, 2006[38]). This can be seen 

by looking at the likelihood of lateral moves within the same firm: lateral moves have a direct productivity cost to the 

firm as workers cannot utilise their entire task-specific human capital stock in another area (e.g. when moving from 

marketing to logistics). However, accumulating at least some task-specific human capital in a lateral position makes 

sense if a worker is scheduled to be promoted to a position that oversees both areas. If a worker’s task-specific human 

capital is sufficiently high, however, the immediate productivity loss associated with a lateral move is higher than any 

expected productivity gain from the lateral move following a promotion. For example, in academic settings, PhD 

economists are not typically moved to the HR department prior to becoming the dean of a department. Using a large 

employer-employee linked dataset on executives at US corporations, Jin and Waldman (2019[41]) show that workers 

with 17 years of education were twice as likely to be laterally moved before promotion than workers with 19 years of 

education. 

4 An occupation is “exposed” to AI if it has a high intensity in skills that AI can perform, see section 2.3 for details.   

5 Fossen and Sorgner (2019[8]) use the occupational impact measure developed by Felten, Raj and Seamans (2018[1]; 

2019[2]) and the Suitability for Machine Learning indicator developed by Brynjolfsson et al. (Brynjolfsson and Mitchell, 

2017[16]; Brynjolfsson, Mitchell and Rock, 2018[17]) discussed in section 2.3. 

6 Acemoglu, Autor and Hazell (2020[9]) use data from Felten, Raj and Seamans (2018[1]; 2019[2]), Brynjolfsson, Mitchell 

and Rock (2017[16]; 2018[17]) and (Webb, 2020[7]) to identify tasks compatible with AI capabilities; and data from online 

job postings to identify firms that use AI, see Section 2.  for details.  
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This paper adds to the literature by looking at the links between AI and employment growth in a cross-

country context. It adapts the AI occupational impact measure proposed by Felten, Raj and Seamans 

(2018[1]; 2019[2]) – an indicator measuring the degree to which occupations rely on abilities in which AI has 

made the most progress in recent years – and extends it to 23 OECD countries by linking it to the Survey 

of Adult Skills, PIAAC. This indicator, which allows for variations in AI exposure across occupations, as 

well as within occupations and across countries, is matched to Labour Force Surveys to analyse the 

relationship with employment growth. 

The paper finds that, over the period 2012-2019, there is no clear relationship between AI exposure and 

employment growth across all occupations. Moreover, in occupations where computer use is high, AI 

appears to be positively associated with employment growth. There is also some evidence of a negative 

relationship between AI exposure and growth in average hours worked among occupations where 

computer use is low. While further research is needed to identify the exact mechanisms driving these 

results, one possible explanation is that partial automation by AI increases productivity directly as well as 

by shifting the task composition of occupations towards higher value-added tasks. This increase in labour 

productivity and output counteracts the direct displacement effect of automation through AI for workers 

with good digital skills, who may find it easier to use AI effectively and shift to non-automatable, higher-

value tasks within their occupations. The opposite could be true for workers with poor digital skills, who 

may be unable to interact efficiently with AI and thus reap all potential benefits of the technology.   

The paper starts out by presenting indicators of AI deployment that have been proposed in the literature 

and discussing their relative merits (Section 2. ). It then goes on to present the indicator developed in this 

paper and builds some intuition on the channels through which occupations are potentially affected by AI 

(Section 3. ). Section 4.  presents the main results.  
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To analyse the links between AI and employment, it is necessary to determine where in the economy AI is 

currently deployed. In the absence of comprehensive data on the adoption of AI by firms, several proxies 

for (potential) AI deployment have been proposed in the literature. They can be grouped into two broad 

categories. The first group of indicators uses information on labour demand to infer AI activity across 

occupations, sectors and locations. In practice, these indicators use online job postings that provide 

information on skills requirements and they therefore will only capture AI deployment if it requires workers 

to have AI skills. The second group of indicators uses information on AI capabilities – that is, information 

on what AI can currently do – and links it to occupations. These indicators measure potential exposure to 

AI and not actual AI adoption. This section presents some of these indicators and discusses their 

advantages and drawbacks.  

2.1. Indicators based on AI-related job posting frequencies  

The first set of indicators use data on AI-related skill requirements in job postings as a proxy for AI 

deployment in firms. The main data source for these indicators is Burning Glass Technologies (BGT), 

which collects detailed information – including job title, sector, required skills etc. – on online job postings 

(see Box 1 for details). Because of the rich and up-to-date information BGT data offers, these indicators 

allow for a timely tracking of the demand for AI skills across the labour market.  

Squicciarini and Nachtigall (2021[10]) identify AI-related job postings by using keywords extracted from 

scientific publications, augmented by text mining techniques and expert validation (see Baruffaldi et al. 

(2020[11]) for details). These keywords belong to four broad groups: (i) generic AI keywords, e.g. “artificial 

intelligence”, “machine learning”; (ii) AI approaches or methods: e.g. “decision trees”, “deep learning”; (iii) 

AI applications: e.g. “computer vision”, “image recognition”; (iv) AI software and libraries: e.g. Python or 

TensorFlow. Since some of these keywords may be used in job postings for non AI-related jobs (e.g. 

“Python”, or “Bayesian”), the authors only tag a job as AI-related if the posting contains at least two AI 

keywords from at least two distinct concepts. This indicator is available on an annual basis for Canada, 

Singapore, the United Kingdom and the United States, for 2012 – 2018.7  

Acemoglu et al. (2020[9]) take a simpler approach by defining vacancies as AI-related if they contain any 

keyword belonging to a simple list of skills related to AI.8 As this indicator will tag any job posting that 

                                                
7 Sectors are available according to the North American Industry classification system (NAICS) for the US and Canada 

and according to the UK Standard Industrial Classification (SIC) and Singapore Industrial Classification (SSIC) for the 

UK and Singapore. Occupational codes are available according to the O*NET classification for Canada, SOC for the 

UK and the US and SSOC for Singapore. These codes can be converted to ISCO at the one-digit level.  

8 This paper uses the same list of skills to look at AI job-postings, see footnote 42 for the complete list of skills. 

2.  Indicators of occupational 

exposure to AI  
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contains one of the keywords, it is less precise than the indicator proposed by Squicciarini and Nachtigall 

(2021[10]), but also easier to reproduce.  

Dawson, Rizoiu and Williams (2021[12]) develop the skills-space or skills-similarity indicator. This approach 

defines two skills as similar if they often occur together in BGT job postings and are both simultaneously 

important for the job posting. A skill is assumed to be less “important” for a particular job posting if it is 

common across job postings. For example, “communication” and “team work” occur in about a quarter of 

all job adds, and would therefore be less important than “machine learning” in a job posting requiring both 

”communication” and “team work”.9 The idea behind this approach is that, if two skills are often 

simultaneously required for jobs, (i) they are complementary and (ii) mastery of one skill means it is easier 

to acquire the other. In that way, similar skills may act as “bridges” for workers wanting to change 

occupations. It also means that workers who possess skills that are similar to AI skills may find it easier to 

work with AI, even if they are not capable of developing the technology themselves. For example, the skill 

“copy writing” is similar to “journalism”, meaning that a copy writer might transition to journalism at a lower 

cost than, say, a social worker, and that a copy writer might find it comparatively easier to use databases 

and other digital tools created for journalists.   

Skill similarity allows the identification and tracking of emerging skills: using a short list of “seed skills”,10 

the indicator can track similar skills as they appear in job ads over time, keeping the indicator up to date. 

For example, TensorFlow is a deep learning framework introduced in 2016. Many job postings now list it 

as a requirement without additionally specifying “deep learning” (Dawson, Rizoiu and Williams, 2021[12]).  

The skill similarity approach is preferable to the simple job posting frequency indicators mentioned above 

(Squicciarini and Nachtigall, 2021[10]; Acemoglu et al., 2020[9]) as it does not only pick up specific AI job 

postings, but also job postings with skills that are similar (but not identical) to AI skills, and may thus enable 

workers to work with AI technologies. Another advantage of this indicator is its dynamic nature: as 

technologies develop and skill requirements evolve, skill similarity can identify new skills that appear in job 

postings together with familiar skills, and keep the relative skill indicators up-to-date. This indicator is 

available at the annual level from 2012-2019 for Australia and New Zealand.11 

Box 1. Burning Glass Technologies (BGT) online job postings data 

Burning Glass Technologies (BGT) collects data on online job postings by web-scraping 40 000 online 

job boards and company websites. It claims to cover the near-universe of online job postings. Data are 

currently available for Australia, Canada, New Zealand, Singapore, the United Kingdom and the United 

States for the time period 2012-2020 (2014-2020 for Germany and 2018-2020 for other European Union 

countries). BGT extracts information such as location, sector, occupation, required skills, education and 

experience levels from the text of job postings (deleting duplicates) and organises it into up to 70 

variables that can be linked to labour force surveys, providing detailed and timely information on labour 

demand.  

                                                
9 To measure importance of skills in job ads, the authors use the Revealed Comparative Advantage (RCA) measure, 

loaned from trade economics, that weighs the importance of a skill in a job posting up if the number of skills for this 

specific posting is low, and weighs it down if the skill is ubiquitous in all job adds. That is, the skill “team work” will be 

generally less important given its ubiquity in all job ads, but its importance in an individual job posting would increase 

if only few other skills were required for that job. 

10 “Artificial Intelligence”, “Machine Learning”, “Data Science”, “Data Mining” and “Big Data”. 

11 The indicator is calculated at the division level (19 industries) according to the Australian and New Zealand Standard 

Industrial Classification Level (ANZSIC).  
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Despite its strengths, BGT data has a number of limitations:  

 It misses vacancies that are not posted online. Carnevale, Jayasundera and Repnikov (2014[13]) 

compare vacancies from survey data according to the Job Openings and Labor Turnover 

Survey (JOLTS) from the US Bureau of Labour Statistics, a representative survey of 16 000 US 

businesses, with BGT data for 2013. They find that roughly 70% of vacancies were posted 

online, with vacancies requiring a college degree significantly more likely to be posted online 

compared to jobs with lower education requirements.  

 There is not necessarily a direct, one-to-one correspondence between an online job ad and an 

actual vacancy: firms might post one job ad for several vacancies, or post job ads without firm 

plans to hire, e.g. because they want to learn about available talent for future hiring needs.  

 BGT data might over-represent growing firms that cannot draw on internal labour markets to the 

same extent as the average firm.  

 Higher turnover in some occupations and industries can produce a skewed image of actual 

labour demand since vacancies reflect a mixture of replacement demand as well as expansion.  

In addition, since BGT data draws on published job advertisements, it is a proxy of current vacancies, 

and not of hiring or actual employment. As a proxy for vacancies, BGT data performs reasonably well, 

although some occupations and sectors are over-represented. Hershbein and Kahn (2018[14]) show for 

the US that, compared to vacancy data from the U.S. Bureau of Labour Statistics’ Job Openings and 

Labour Turnover Survey (JOLTS), BGT over-represents health care and social assistance, finance and 

insurance, and education, while under-representing accommodation, food services and construction 

(where informal hiring is more prevalent) as well as public administration/government. These 

differences are stable across time, however, such that changes in labour demand in BGT track well 

with JOLTS data. Regarding hiring, they also compare BGT data with new jobs according to the Current 

Population Survey (CPS). BGT data strongly over-represents computer and mathematical occupations 

(by a factor of over four, which is a concern when looking at growth in demand for AI skills as compared 

to other skills), as well as occupations in management, healthcare, and business and financial 

operations. It under-represents all remaining occupations, including transportation, food preparation 

and serving, production or construction.  

Cammeraat and Squicciarini (2020[15]) argue that, because of differences in turnover across 

occupations, countries and time, as well as differences in the collection of national vacancy statistics, 

the representativeness of BGT data as an indicator for labour and skills demand should be measured 

against employment growth. They compare growth rates in employment with growth rates in BGT job 

postings on the occupational level in the six countries for which a BGT timeline exists. They find that, 

across countries, the deviation between BGT and employment growth rates by occupation is lower than 

10 percentage points for 65% of the employed population. They observe the biggest deviations for 

agricultural, forestry and fishery workers, as well as community and personal service workers, again 

occupations where informal hiring may be more prevalent.  

2.2. Task-based indicators 

Task-based indicators for AI adoption are based on measures of AI capabilities linked to tasks workers 

perform, often at the occupational level. They identify occupations as exposed to AI if they perform tasks 

that AI is increasingly capable of performing.  
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The AI occupational exposure measure developed by Felten, Raj and Seamans (2018[1]; 2019[2]) is based 

on progress scores in nine AI applications12 (such as reading comprehension or image recognition) from 

the AI progress measurement dataset provided by the Electronic Frontier Foundation (EFF). The EFF 

monitors progress in AI applications using a mixture of academic literature, blog posts and websites 

focused on AI. Each application may have several progress scores. One example of a progress score 

would be a recognition error rate for image recognition. The authors rescale these scores to arrive at a 

composite score that measures progress in each application between 2010 and 2015.  

Felten, Raj and Seamans (2018[1]; 2019[2]) then link these AI applications to abilities in the US Department 

of Labor’s O*NET database. Abilities are defined as “enduring attributes of the individual that influence 

performance”, e.g. “peripheral vision” or “oral comprehension”. They enable workers to perform tasks in 

their jobs (such as driving a car or answering a call), but are distinct from skills in that they cannot typically 

be acquired or learned. Thus, linking O*NET abilities to AI applications means linking human to AI abilities.  

The link between O*NET abilities and AI applications (a correlation matrix) is made via an Amazon 

Mechanical Turk survey of 200 gig workers per AI application, who are asked whether a given AI 

application – e.g. image recognition – can be used for a certain ability – e.g. peripheral vision.13 The 

correlation matrix between applications and abilities is then calculated as the share of respondents who 

thought that a given AI application could be used for a given ability. These abilities are subsequently linked 

to occupations using the O*NET database. This indicator is available for the US for 2010-15.14  

Similarly, the Suitability for Machine Learning indicator developed by Brynjolfsson, Mitchell and Rock 

(2017[16]; 2018[17]) assigns a suitability for machine learning score to each of the 2 069 narrowly defined 

work activities from the O*NET database that are shared across occupations (e.g. “assisting and caring 

for others”, “coaching others”, “coordinating the work of others”). For these scores, they use a Machine 

Learning suitability rubric consisting of 23 distinct statements describing a work activity. For example, for 

the statement “Task is describable by rules”, the highest score would be “Task can be fully described by a 

detailed set of rules (e.g. following a recipe)”, whereas the lowest score would be “The task has no clear, 

well-known set of rules on what is and is not effective (e.g. writing a book)”. They use the human 

intelligence task crowdsourcing platform CrowdFlower to score each direct work activity by seven to ten 

respondents. The direct work activities are then aggregated to tasks (e.g. “assisting and caring for others”, 

“coaching others”, “coordinating the work of others” aggregate to “interacting with others”), and the tasks 

to occupations. This indicator is available for the US for the year 2016/2017.  

Tolan et al. (2021[18]) introduce a layer of cognitive abilities to connect AI applications (that they call 

benchmarks) to tasks. The authors define 14 cognitive abilities (e.g. visual processing, planning and 

sequential decision-making and acting, communication, etc.) from the psychometrics, comparative 

psychology, cognitive science and AI literature.15 They link these abilities to 328 different AI benchmarks 

                                                
12 Abstract strategy games, real-time video games, image recognition, visual question answering, image generation, 

reading comprehension, language modelling, translation and speech recognition. Abstract strategy games, for 

example are defined as “the ability to play abstract games involving sometimes complex strategy and reasoning ability, 

such as chess, go, or checkers, at a high level”. While the EFF tracks progress on 16 applications, AI has not made 

any progress on 7 of these over the relevant time period. (Felten, Raj and Seamans, 2021[35]).  

13 The background of the gig workers is not known and so they may not necessarily be AI experts. This could be a 

potential weakness of this indicator. In contrast, Tolan et al. 2021[20]) rely on expert assessments for the link between 

AI applications and worker abilities. (2021[18]) 

14 At the six digit SOC 2010 occupational level, this can be aggregated across sectors and geographical regions, see 

(Felten, Raj and Seamans, 2021[35]).  

15 The abilities are chosen from Hernández-Orallo (2017[37]) to be at an intermediate level of detail, excluding very 

general abilities that would influence all others, such as general intelligence, and too specific abilities] and skills, such 

as being able to drive a car or music skills. They also exclude any personality traits that do not apply to machines. The 
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(or applications) stemming from the authors’ own previous analysis and annotation of AI papers as well as 

from open resources such as Papers with Code.16 These sources in turn draw on data from multiple verified 

sources, including academic literature, review articles etc. on machine learning and AI. They use the 

research intensity in a specific benchmark (number of publications, news stories, blog entries etc.)  

obtained from AI topics.17 Tasks are measured at the worker level using the European Working Conditions 

Survey (EWCS), PIAAC and the O*NET database. Task intensity is derived as a measure of how much 

time an individual worker spends on a task and how often the task is performed.  

The mapping between cognitive abilities and AI benchmarks, as well as between cognitive abilities and 

tasks, relies on a correspondence matrix that assigns a value of 1 if the ability is absolutely required to 

solve a benchmark or complete a task, and 0 if it is not necessary at all. This correspondence matrix was 

populated by a group of multidisciplinary researchers for the mapping between tasks and cognitive abilities, 

and by a group of AI-specialised researchers for the mapping between AI benchmarks and cognitive 

abilities. This indicator is available from 2008 to 2018, at the ISCO-3 level, and constructed to be country-

invariant (as it combines data covering different countries).  

Webb (2020[7]) constructs his exposure of occupations to any technology indicator by directly comparing 

the text of patents from Google patents public data to the texts of job descriptions from the O*NET database 

to quantify the overlap between patent descriptions and job task descriptions. By limiting the patents to AI 

patents (using a list of key-words), this indicator can be narrowed to only apply to AI. Each particular task 

is then assigned a score according to the prevalence of such patents that mention this task; tasks are then 

aggregated to occupations.  

2.3. What do these indicators measure?  

To gauge the link between AI and employment, the chosen indicator for this study should proxy actual AI 

deployment in the economy as closely as possible. Furthermore, it should proxy AI deployment at the 

occupation level because switching occupations is more costly for workers than switching firms or sectors, 

making the occupation the relevant level for the automation risk of individual workers.  

Task-based approaches measure potential automatability of tasks (and occupations), so they are 

measures of AI exposure, not deployment. Because task-based measures look at potential automatability, 

they cannot capture uneven adoption of AI across occupations, sectors or countries. Thus, in a cross-

country analysis, the only source of variation in a task-based indicator are differences in the occupational 

task composition across countries, as well as cross-country differences in the occupational distribution.  

Indicators based on job posting data measure demand for AI skills (albeit with some noise, see Box 1), as 

opposed to AI use. Thus, they rely on the assumption that AI use in a firm, sector or occupation will lead 

to employer demand for AI skills in that particular firm, sector, or occupation. This is not necessarily the 

case, however:  

 Some firms will decide to train workers in AI rather than recruit workers with AI skills; their 

propensity to do so may vary across occupations. 

                                                
abilities are: Memory processing, Sensorimotor interaction, Visual processing, Auditory processing, Attention and 

search, Planning, sequential decision-making and acting, Comprehension and expression, Communication, Emotion 

and self-control, Navigation, Conceptualisation, learning and abstraction, Quantitative and logical reasoning, Mind 

modelling and social interaction and Metacognition and confidence assessment.  

16 Free and open repository of machine learning code and results, which includes data from several repositories 

(including EFF, NLPD progress etc.).  

17 An archive kept by the by the Association for the Advancement of Artificial Intelligence (AAI).  
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 Many AI applications will not require AI skills to work with them.  

 Even where AI skills are needed, many firms, especially smaller ones, are likely to outsource AI 

development and support with its adoption to specialised AI development firms. In this case, 

vacancies associated with AI adoption would emerge in a different firm or sector to where the 

technology was actually being deployed.  

 The assumption that AI deployment requires hiring of staff with AI skills is even more problematic 

when the indicator is applied at the occupation level. Firms that adopt AI may seek workers with AI 

skills in completely different occupations than the workers whose tasks are being automated by AI. 

For instance, an insurance company wanting to substitute or enhance some of the tasks of 

insurance clerks with AI would not necessarily hire insurance clerks with AI skills, but AI 

professionals to develop or deploy the technology. Insurance clerks may only have to interact with 

this technology, which might not require AI development skills (but may well require other 

specialised skills). Thus, even with broad-based deployment of AI in the financial industry, this 

indicator may not show an increasing number of job postings for insurance clerks with AI skills. 

This effect could also be heterogeneous across countries and time. For example, Saunders, 

Ahrens and Qian (2020[19]) show that law firms in the UK tend to hire AI professionals without legal 

knowledge, while law firms in Singapore and the US do advertise jobs with hybrid legal-AI skillsets.  

Thus, indicators based on labour demand data are a good proxy for AI deployment at the firm and sector 

level as long as there is no significant outsourcing of AI development and maintenance, and the production 

process is such that using the technology requires specialised AI skills. If these assumptions do not hold, 

these indicators will be incomplete. Whether or not this is the case is an empirical question that requires 

further research. To date the only empirical reference on this question is Acemoglu et al. (2020[9]) who 

show for the US that the share of job postings that require AI skills increases faster in firms that are heavily 

exposed to AI (according to task-based indicators). For example, a one standard deviation increase in the 

measure of AI exposure according to Felten et al. (2018[1]) (2019[2])  leads to a 15% increase in the number 

of published AI vacancies. 

To shed further light on the relationship between the two types of indicators, Figure 1 plots the 2012-2019 

percentage point change in the share of BGT job postings that require AI skills18 across 36 sectors against 

a sector-level task-based AI exposure score, similar to the occupational AI exposure score developed in 

this paper (see Section 3.1.1)19. This analysis only covers the United Kingdom and the United States20 

because of data availability. For both countries, a positive relationship is apparent, suggesting that, overall, 

(i) the two measures are consistent and (ii) AI deployment does require some AI talent at the sector level. 

Specifically, a one standard deviation increase in AI exposure (approximately the difference in exposure 

between finance and public administration) is associated with a 0.33 higher percentage point change in 

the share of job postings that require AI skills in the United-Kingdom; a similar relationship emerges in the 

United-States.21  

                                                
18 AI-related technical skills are identified based on the list provided in Acemoglu et al. (2020[9]), and detailed in 

footnote 42.  

19 As with occupations, the industry-level scores are derived using the average frequency with which workers in each 

industry perform a set of 33 tasks, separately for each country.  

20 The United Kingdom and the United States are the only countries in the sample analysed (see Section 3.1.1) with 

2012 Burning Glass Technologies data available, thereby allowing for the examination of trends over the past decade. 

21 The standard deviation of exposure to AI is 0.083 in the United-Kingdom and 0.075 in the United-States. These 

values are multiplied by the slopes of the linear relationships displayed in Figure 1: 3.90 and 4.95 respectively. The 

average share of job postings that require AI skills was 0.14% in the United-Kingdom and 0.26% in the United-States 

in 2012, and this has increased to 0.67% and 0.94% respectively in 2019. 
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Figure 1. Sectors with higher exposure to AI saw a higher increase in their share of job postings 
that require AI skills 

Percentage point* change in the share of job postings that require AI skills (2012-2019) versus average exposure to 

AI (2012), by sector  

 

Note: The share of job postings that require AI skills in a sector is the number of job postings requiring such skills in that sector divided by the 

total number of job postings in that same sector. Not all sectors have marker labels due to space constraints. *Percentage point changes are 

preferred over percentage changes because the share of job postings that require AI skills is equal to zero in some sectors in 2012. 

Source: Author’ calculations using data from Burning Glass Technologies, PIAAC and Felten, Raj and Seamans (2019[2]). 

While it is reassuring that, at the sector level, the two measures appear consistent, it is also clear that job 

postings that require AI skills fail to identify certain sectors that are, from a task perspective, highly exposed 

to AI, such as education, the energy sector, the oil industry, public administration and real estate activities. 

This suggests that AI development and support may be outsourced and / or that the use of AI does not 

require AI skills in these sectors.  

In addition, and as stated above, there is a priori no reason that demand-based indicators would pick up 

AI deployment at the occupational level, as firms that adopt AI may seek workers with AI skills in completely 

different occupations than the workers whose tasks are being automated by AI. This is also borne out in 

the analysis in this paper (see Section 4.4). Thus, labour demand-based indicators are unlikely to be good 
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proxies for AI deployment at the occupational level and, in the analysis described in this paper, preference 

will be given to task-based measures even though they, too, are only an imperfect proxy for AI adoption. 

2.4. Which employment effects can these indicators capture?  

This paper analyses the relationship between AI adoption and employment at the occupational level, since 

it is automation risk at the occupational level that is most relevant for individual workers. The analysis will 

therefore require a measure of AI adoption at the occupational level and this section assesses which type 

of indicator might be best suited to that purpose.  

It is useful to think of AI-driven automation as having two possible, but opposed, employment effects. On 

the one hand, AI may depress employment via automation/substitution. On the other, it may increase it by 

raising worker productivity.  

Focusing on the substitution effect first, task-based indicators will pick up such effects since they measure 

what tasks could potentially be automated by AI. By contrast, labour-demand based indicators identify 

occupational AI exposure only if AI skills are mentioned in online job postings for a particular occupation. 

Thus, they will only pick up substitution effects (that is, a subsequent decline in employment for a particular 

occupation) if the production process is such that workers whose tasks are being automated need AI skills 

to interact with the technology.  

Regarding the productivity effect, there are several ways in which AI might increase employment. The most 

straightforward way is that AI increases productivity in a given task, and thus lowers production costs, 

which can lead to increased employment if demand for a product or service is sufficiently price elastic. This 

was the case, for example, for weavers in the industrial revolution (see footnote 3, Bessen (2016[20])).  

In addition, technological progress may allow workers to focus on higher value-added tasks within their 

occupation that the technology cannot (yet) perform. For example, AI is increasingly deployed in the 

financial services industry to forecast stock performance. Grennan and Michaely (2017[21]) show that stock 

analysts have shifted their attention away from stocks for which an abundance of data is available (which 

lends itself to analysis by AI) towards stocks for which data is scarce. To predict the performance of “low-

AI” stocks, analysts gather “soft” information directly from companies’ management, suppliers and clients, 

thus concentrating on tasks requiring a capacity for complex human interaction, of which AI is not (yet) 

capable.  

Task-based indicators will pick up these productivity effects (as they identify exposed occupations directly 

via their task structure), while labour-demand based indicators will only do so if workers whose tasks are 

being automated need to interact with the technology, and interacting with the technology requires 

specialised AI skills.  

AI can also be used to augment other technologies, that subsequently automate certain tasks. For 

example, in robotics, AI supports the efficient automation of physical tasks by improving the vision of 

robots, or by enabling robots to “learn” from the experience of other robots, e.g. by facilitating the exchange 

of information on the layout of rooms between cleaning robots (Nolan, 2021[22]). While these improvements 

to robotics are connected to AI applications (in this example: image recognition and sensory perception of 

room layouts), the tasks that are being automated (cleaning of rooms) mostly consist of the physical 

manipulation of objects and thus pertain to the field of robotics. Thus, AI improves the effectiveness of 

robots to perform tasks associated with cleaners, without performing physical cleaning tasks. As task-

based indicators only identify tasks that AI itself can perform (and not tasks that it merely facilitates), they 

would not capture this effect. In robotics, this would mostly affect physical tasks often performed by low 

and medium-skilled workers. Indicators based on online vacancies would also be unlikely to capture AI 

augmenting other technologies at the occupation level – unless cleaners require AI skills to work with 

cleaning robots.  
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Finally, AI could enable the launch of completely new products or services, that lead to job creation, e.g. 

in marketing or sales of AI-based products and services (Acemoglu et al., 2020[9]). Both task- and labour-

demand-based indicators cannot generally measure this effect (unless marketing / selling of AI products 

requires AI-skills).  

To conclude, both types of indicators are likely to understate actual AI deployment at the occupational level 

(see Table 1). Labour-demand based indicators in particular will miss a significant part of AI deployment if 

workers whose tasks are being automated do not need to interact with AI or if the use of AI does not require 

any AI skills. Task-based indicators, on the other hand, are not capable of picking up differences in actual 

AI deployment across time and space (this is because they only measure exposure, not actual adoption). 

Finally, neither indicator will capture AI augmenting other automating technologies, such as robotics, which 

is likely to disproportionally affect low-skilled, blue collar occupations. 

On the whole, for assessing the links between AI and employment at the occupational level, indicators 

based on labour demand data are likely to be incomplete. Task-based indicators are therefore more 

appropriate for the analysis carried out in this paper. Keeping their  limitations in mind, however, is crucial.  

Table 1. Which potential employment effects of AI can task-based and labour-demand based 
indicators capture? 

 Task-based indicators Labour demand-based indicators 

Substitution effect (-) Yes Only if the production process is such that 
workers in the partially automated occupation 

require AI skills to interact with the technology. 

Productivity effect (+)  Yes Only if the production process is such that 
workers in the partially automated occupation 

require AI skills to interact with the technology. 

Augmentation of other technologies (e.g. robotics) (-)  No  Only if the production process is such that 
workers in the partially automated occupation 

require AI skills to interact with the technology. 

Job creation through new products and services enabled by AI (+) No Only if these new jobs require AI skills  

Note: The table only refers to employment effects identified at the occupational level. +/- denote the sign of the employment effect.  
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This paper extends the occupational exposure measure, proposed by Felten, Raj and Seamans (2018[1]; 

2019[2]) to 23 OECD countries22 to look at the links between AI and labour market outcomes for 36 

occupations23
 in recent years (2012-2019). The measure of occupational exposure to AI proxies the degree 

to which tasks in those occupations can be automated by AI. Thus, the analysis compares occupations 

with a high degree of automatability by AI to those with a low degree.  

This section presents the data used for the analysis. It begins by describing the construction of the measure 

of occupational exposure to AI developed and used in this paper, and builds some intuition as to why some 

occupations are exposed to a higher degree of potential automation by AI than others. It then shows some 

descriptive statistics for AI exposure and labour market outcomes: employment, working hours and job 

postings that require AI skills. Finally, it describes different measures of the task composition of 

occupations, which will help shed light on the relationship between AI exposure and labour market 

outcomes.     

3.1. Occupational exposure to AI 

Several indicators for (potential) AI deployment have been proposed in the literature (see Section 2. ), 

most of them geared to the US. Since this paper looks at the links between AI and employment across 

several countries, country coverage is a key criterion for the choice of indicator. This excludes indicators 

based on AI-related job-posting frequencies, as pre-2018 BGT data is only available for English-speaking 

countries). 24 In addition to data availability issues, indicators based on labour demand data are also likely 

to be less complete than task-based indicators (see Section 2.3).Among the task-based measures, the 

suitability for machine learning indicator (Brynjolfsson and Mitchell, 2017[16]; Brynjolfsson, Mitchell and 

Rock, 2018[17]) was not publicly accessible at the time of publication. Webb’s (2020[7]) indicator captures 

the stock of patents until 2020, and is therefore too recent to look at the links between AI and the labour 

market during the observation period (2012-2019), particularly given that major advancements in AI 

occurred between 2015 and 2020, and the slow pace of diffusion of technology in the economy. The paper 

therefore uses the occupational exposure measure (Felten, Raj and Seamans, 2018[1]; 2019[2]), which has 

the advantage of capturing AI developments until 2015, leaving some time for the technology to be 

                                                
22 The 23 countries are Austria, Belgium, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, 

Hungary, Ireland, Italy, Lithuania, Mexico, the Netherlands, Norway, Poland, Slovenia, the Slovak Republic, Spain, 

Sweden, United Kingdom and the United States. 

23 This paper aims to explore the links between employment and AI deployment in the economy, rather than the direct 

employment increase due to AI development. Two occupations are particularly likely to be involved in AI development: 

IT technology professionals and IT technicians. These two occupations both have high levels of exposure to AI and 

some of the highest employment growth over this paper’s observation period, which may be partly related to increased 

activity in AI development. These occupations may bias the analysis and they are therefore excluded from the sample. 

Nevertheless, the results are not sensitive to the inclusion of IT technology professionals and IT technicians in the 

analysis. 

24 This paper uses BGT data for additional results for the countries for which they are available. 

3.  Data 



DELSA/ELSA/WD/SEM(2021)12  21 

ARTIFICIAL INTELLIGENCE AND EMPLOYMENT 
Unclassified 

deployed in the economy. It is also based on actual scientific progress in AI, as opposed to research activity 

as the indicator proposed by Tolan et al. (2021[18]).  

While the preferred measure for this analysis is the AI occupational exposure measure proposed by Felten, 

Raj and Seamans (2018[1]; 2019[2]), the paper also presents additional results using Acemoglu et al.’s 

(2020[9]) job-posting indicator (an indicator based on job postings), as well as robustness checks using 

task-based indicators by Tolan et al. (2021[18]) and Webb (2020[7]).25 This section describes the 

construction of the main indicator, and some descriptive statistics.  

3.1.1. Construction of the AI occupational exposure measure 

The AI occupational exposure measure links progress in nine AI applications to 52 abilities in the US 

Department of Labor’s O*NET database (see Section 2.3 for more details). This paper extends it to 23 

OECD countries by mapping the O*NET abilities to tasks from the OECD’s Survey of Adult Skills (PIAAC), 

and then back to occupations (see Figure 2 for an illustration of the link).26 This allows for task-content 

variations in AI exposure across occupations, as well as within occupations and across countries that may 

arise because of institutional or socio-economic differences across countries. Thus, the indicator proposed 

in this paper differs from that of Felten, Raj and Seamans (2019[2]) only in that it relies on PIAAC data to 

take into account occupational task-content heterogeneity across countries. That is, the indicator adopted 

in this paper is defined at the occupation-country cell level rather than at the occupation level (as in Felten, 

Raj and Seamans (2019[2])). It is scaled such that the minimum is zero and the maximum is one over the 

full sample of occupation-country cells. It indicates relative exposure to AI, and no other meaningful 

interpretation can be given to its actual values. 

In this paper, the link between O*NET abilities and PIAAC tasks is performed manually by asking whether 

a given ability is indispensable for performing a given task, e.g. is oral comprehension absolutely necessary 

to teach people? A given O*NET ability can therefore be linked to several PIAAC tasks, and conversely, a 

given PIAAC task can be linked to several O*NET abilities. This link was made by the authors of the paper 

and, in case of diverging answers, agreement was reached through an iterative discussion and consensus 

method, similar to the Delphi method described in Tolan et al (2021[18]). Of the 52 O*NET abilities, 35 are 

related to at least one task in PIAAC. Thus, the indicator loses 17 abilities compared to Felten et. al.’s 

(2018[1]; 2019[2]) measure. All the measures that are lost in this way are physical, psychomotor or sensory, 

                                                
25 While the three task-based indicators point to the same relationships between exposure to AI and employment, the 

results are less clearcut for the relationship between exposure to AI and average working hours. 

26 Instead of using the O*NET US-specific measures of an ability’s “prevalence” and “importance” in an occupation, 

country-specific measures have been developed based on data from the Programme for the International Assessment 

of Adult Competencies (PIAAC), which reports the frequency with which a number of tasks are performed on the job 

by each surveyed individual. This information was used to measure the average frequency with which workers in each 

occupation (classified using two-digit ISCO-08) perform 33 tasks, and this was done separately for each country. Each 

O*NET ability was then linked to each of these 33 tasks, based on the authors’ binary assessments of whether the 

ability is needed to perform the task or not. The 33 tasks were then grouped into 12 broad categories to address 

differences in data availability between types of task. For example, “read letters”, “read bills” and “write letters” were 

grouped into one category (“literacy – business”), so that this type of task does not weight more in the final score than 

tasks types associated with a single PIAAC task (e.g. “dexterity” or “management”). For each ability and each 

occupation, 12 measures were constructed to reflect the frequency with which workers use the ability in the occupation 

to perform tasks under the 12 broad task categories. This was done by taking, within each category of tasks, the sum 

of the frequencies of the tasks assigned to the ability divided by the total number of tasks in the category. Finally, the 

frequency with which workers use the ability at the two-digit ISCO-08 level and by country was obtained by taking the 

sum of these 12 measures. The methodology, including the definition of the broad categories of tasks, is adapted from 

Tolan et al. (2021[18]) and Fernández-Macías and Bisello (2020[34]). 
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as there are no tasks requiring these abilities in PIAAC. 27 As a result, the occupational intensity of physical, 

psychomotor or sensory abilities is poorly estimated using PIAAC data. Therefore, whenever possible, 

robustness checks use O*NET scores of “prevalence” and “importance” of abilities within occupations for 

the United States (as in Felten, Raj and Seamans (2018[1])) instead of PIAAC-based measures. These 

robustness tests necessarily assume that the importance and prevalence of abilities are the same in other 

countries as in the United States.  

The level of exposure to AI in a particular occupation reflects: (i) the progress made by AI in specific 

applications and (ii) the extent to which those applications are related to abilities required in that 

occupation. Like all task-based measures, it is at its core a measure of potential automation of occupations 

by AI, as it indicates which occupations rely most on abilities in which AI has made progress in recent 

years. It should capture potential positive productivity effects of AI, as well as negative substitution effects 

caused by (partial) automation of tasks by AI. However, it cannot capture any effects of AI progress on 

occupations when these effects do not rely on worker abilities that are directly related to the capabilities of 

AI, such as might be the case when AI augments other technologies,  which consequently make progress 

in the abilities that a person needs in his/her job (see also Section 2.3). Section 3.1.3 shows AI exposure 

across occupations and builds some intuition on why the indicator identifies some occupations as more 

exposed to AI than others.  

Figure 2. Construction of the measure of occupational exposure to AI 

Adaptation from Felten, Raj and Seamans (2018[1]) to 23 OECD countries 

 

Note: The authors link O*NET abilities and PIAAC tasks manually by asking whether a given ability is indispensable for performing a given task. 

The link between O*NET abilities and AI applications (a correlation matrix) is taken from Felten, Raj and Seamans (2019[2]). The matrix was 

built by an Amazon Mechanical Turk survey of 200 gig workers per AI application, who were asked whether a given AI application can be used 

for a certain ability. The correlation matrix between applications and abilities is then calculated as the share of respondents who thought that a 

given AI application could be used for a given ability. This chart is for illustrative purposes and is not an exhaustive representation of the links 

between the tasks, abilities and AI applications displayed. 

                                                
27 The 17 lost abilities are: control prevision, multilimb coordination, response orientation, reaction time, speed of limb 

movement, explosive strength, extent flexibility, dynamic flexibility, gross body coordination, gross body equilibrium, 

far vision, night vision, peripheral vision,  glare sensitivity, hearing sensitivity, auditory attention and sound localization. 
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3.1.2. AI progress and abilities 

Over the period 2010-2015, AI has made the most progress in applications that affect abilities required to 

perform non-routine cognitive tasks, in particular: information ordering, memorisation, perceptual speed, 

speed of closure and flexibility of closure (Figure 3).28 By contrast, AI has made the least progress in 

applications that affect physical and psychomotor abilities.29 This is consistent with emerging evidence that 

AI is capable of performing cognitive, non-routine tasks (Lane and Saint-Martin, 2021[6]). 

Figure 3. AI has made the most progress in abilities that are required to perform non-routine, 
cognitive tasks 

Progress made by AI in relation to each ability, 2010-2015 

 

Note: The link between O*NET abilities and AI applications (a correlation matrix) is taken from Felten, Raj and Seamans (2019[2]). The matrix 

was built by  an Amazon Mechanical Turk survey of 200 gig workers per AI application, who were asked whether a given AI application – e.g. 

image recognition – can be used for a certain ability – e.g. near vision.  The correlation matrix between applications and abilities is then calculated 

as the share of respondents who thought that a given AI application could be used for a given ability. To obtain the score of progress made by 

AI in relation to a given ability, the shares corresponding to that ability are first multiplied by the Electronic Frontier Foundation (EFF) progress 

scores in the AI applications; these products are then summed over all nine AI applications. 

Source: Authors’ calculations using data from Felten, Raj and Seamans (2019[2]).  

                                                
28 Perceptual speed is the ability to quickly and accurately compare similarities and differences among sets of letters, 

numbers, objects, pictures, or patterns. Speed of closure is the ability to quickly make sense of, combine, and organize 

information into meaningful patterns. Flexibility of closure is the ability to identify or detect a known pattern (a figure, 

object, word, or sound) that is hidden in other distracting material. 

29 Only one psychomotor ability has an intermediate score: rate control, which is the ability to time one’s movements 

or the movement of a piece of equipment in anticipation of changes in the speed and/or direction of a moving object 

or scene. 
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3.1.3. Occupational exposure to AI 

The kind of abilities AI has made the most progress in are disproportionately used in highly-educated, 

white-collar occupations. As a result, white-collar occupations requiring high levels of formal education are 

among the occupations with the highest exposure to AI: Science and Engineering Professionals, but also 

Business and Administration Professionals, Managers; Chiefs Executives; and Legal, Social and Cultural 

Professionals (Figure 4). By contrast, occupations with the lowest exposure include occupations with an 

emphasis on physical tasks: Cleaners and Helpers; Agricultural Forestry, Fishery Labourers; Food 

Preparation Assistants and Labourers.30  

The occupational intensity of some abilities is poorly estimated due to PIAAC data limitations. In particular, 

the 33 PIAAC tasks used in the analysis include only two non-cognitive tasks, and some of the O*NET 

abilities are not related to any of these tasks. Therefore, as a robustness exercise, Figure A A.1 displays 

the level of exposure to AI obtained when using O*NET scores of “prevalence” and “importance” of abilities 

within occupations for the United States (as in Felten, Raj and Seamans (2018[1])) instead of the PIAAC-

based measures. That is, the robustness test assumes that the importance and prevalence of abilities is 

the same in other countries as in the United States. The robustness test shows the same patterns in terms 

of AI exposure by occupation, suggesting that it is fine to use the measure linked to PIAAC abilities. 

Figure 4. Highly educated white-collar occupations are among the occupations with the highest 
exposure to AI  

Average exposure to AI across countries by occupation, 2012 

 

Note: The averages presented are unweighted. Cross-country averages are taken over the 23 countries included in the analysis. 

                                                
30 To get results at the ISCO-08 2-digit level, scores were mapped from the SOC 2010 6-digits classification to the 

ISCO-08 4-digit classification, and aggregated at the 2-digit level by using average scores weighted by the number of 

full-time equivalent employees in each occupation in the United States, as provided by Webb (2020[7]) and based on 

American Community Survey 2010 data. 
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Source: Authors’ calculations using data from the Programme for the International Assessment of Adult Competencies (PIAAC) and Felten, Raj 

and Seamans (2019[2]). 

Cleaners and Helpers, the least exposed occupation according to this measure, have a low score of 

occupational exposure to AI because they rely less than other workers on cognitive abilities (including 

those in which AI has made the most progress), whereas they rely more on physical and psychomotor 

abilities (in which AI has made little progress). Figure 5, Panel A illustrates this by plotting the extent to 

which Cleaners and Helpers use any of the 35 abilities (relative to the average use of that ability across all 

occupations) against AI progress in that ability. Compared to the average worker, Cleaners and Helpers 

rely heavily on physical abilities such as dynamic / static / trunk strength and dexterity, areas in which AI 

has made the least progress in recent years. They rely less than other occupations on abilities with the 

fastest AI progress, such as information ordering and memorisation. Business Professionals, in contrast, 

are heavily exposed to AI because they rely more than other workers on cognitive abilities, and less on 

physical and psychomotor abilities (Figure 5 Panel B).  

As a robustness check, Figure A A.2 replicates this analysis using O*NET scores of “prevalence” and 

“importance” of abilities within occupations instead of PIAAC-based measures, and it shows the same 

patterns. 

As abilities are the only link between occupations and progress in AI, the occupational exposure measure 

cannot detect any effects of AI that do not work directly through AI capabilities, for example if AI is employed 

to make other technologies more efficient. Consider the example of drivers, an occupation often discussed 

as at-risk of being substituted by AI. Drivers receive a below-average score in the AI occupational exposure 

measure (see Figure 4). This is because the driving component of autonomous vehicle technologies relies 

on the physical manipulation of objects, which is in the realm of robotics, not on AI. AI does touch upon 

some abilities needed to drive a car – such as the ability to plan a route or perceive and distinguish objects 

at a distance – but the majority of tasks performed when driving a car are physical. AI might well be 

essential for driverless cars, but mainly by enabling robotic technology, which possesses the physical 

abilities necessary to drive a vehicle. Thus, this indicator can be seen as isolating the “pure” effects of AI 

(Felten, Raj and Seamans, 2019[2]). 



26  DELSA/ELSA/WD/SEM(2021)12 

ARTIFICIAL INTELLIGENCE AND EMPLOYMENT 
Unclassified 

Figure 5. Cross-occupation differences in AI exposure are caused by differences in the intensity of 
use of abilities  

Intensity of use of an ability relative to the average across occupations, and progress made by AI in relation to that 

ability, 2012 

 

Note: Ability intensity represents the cross-country average frequency of the use of an ability among Cleaner and helpers (top) or Business 

professionals (bottom) minus the cross-country average frequency of the use of that ability, averaged across the 36 occupations in the sample.   

Source: Authors’ calculations using data from the Programme for the International Assessment of Adult Competencies (PIAAC) and Felten, Raj 

and Seamans (2019[2]). 
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3.1.4. Cross-country differences in occupational exposure to AI 

On average, an occupation’s exposure to AI varies little across countries – differences across occupations 

tend to be greater. The average score of AI exposure across occupations ranges from 0.52 (Lithuania) to 

0.72 (Finland, Figure 6) among the 23 countries analysed.31 By contrast, the average score across 

countries for the 36 occupations ranges from 0.26 (cleaners and helpers) to 0.87 (business professionals). 

Even the most exposed cleaners and helpers (in Finland) are only about half as exposed to AI as the least 

exposed business professionals (in Lithuania) (Figure A A.3). That being said, occupations tend to be 

slightly more exposed to AI in Northern European countries than in Eastern European ones (Figure 6).  

Figure 6. Cross-country differences in exposure to AI for a given occupation are small compared to 
cross-occupation differences 

Average exposure to AI across occupations by country, 2012 

  

Note: The averages presented are unweighted averages across the 36 occupations in the sample.  

Source: Authors’ calculations using data from the Programme for the International Assessment of Adult Competencies (PIAAC) and Felten, Raj 

and Seamans (2019[2]). 

A different way of showing that AI exposure varies more across occupations than across countries for a 

given occupation is by contrasting the distribution of exposure to AI across occupations in the most 

exposed country in the sample (Finland) with that in the least exposed country (Lithuania, Figure 7). The 

distributions are very similar. In both countries, highly educated white-collar occupations have the highest 

exposure to AI and non-office-based, physical occupations have the lowest exposure.  

                                                
31 Averages are unweighted averages across occupations, so that cross-country differences only reflect differences 

in the ability requirements of occupations between countries, not differences in the occupational composition across 

countries.  
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Figure 7. The distribution of AI exposure across occupations is similar in Finland and Lithuania 

Exposure to AI, 2012 

 

Source: Authors’ calculations using data from the Programme for the International Assessment of Adult Competencies (PIAAC) and Felten, Raj 

and Seamans (2019[2]). 

Differences in exposure to AI between Finland and Lithuania are greater for occupations in the lower half 

of the distribution of exposure to AI (Figure 7). For example, Food Preparation Assistants in Finland are 

more than twice as exposed to AI than food preparation assistants in Lithuania, while the score for 

Business and Administration Professionals is only 12% higher in Finland than in Lithuania.  

This is because, while occupations across the entire spectrum of exposure to AI rely more on physical than 

on cognitive abilities in Lithuania than in Finland, this reliance is more pronounced at the low end of the 

exposure spectrum. Figure 8 illustrates this for the least (Cleaners and Helpers) and the most exposed 

occupations (Business and Administration Professionals). The top panel displays: (i) the difference in the 

intensity of use of each ability by Cleaners and Helpers between Finland and Lithuania; and (ii) the 

progress made by AI in relation to that ability. The bottom panel shows the same for Business and 

Administration Professionals. 

For both occupations, workers in Lithuania tend to rely more on physical and psychomotor abilities (which 

are little exposed to AI), and less on cognitive abilities, including cognitive abilities in which AI has made 

the most progress. The differences in the intensity of use of cognitive, physical and psychomotor abilities 

between Finland and Lithuania are however greater for Cleaners and Helpers than they are for Business 

and Administration Professionals (Figure 8). As an example of how cleaners may be more exposed to AI 

in Finland than in Lithuania, AI navigation tools may help cleaning robots map out their route. They could 

therefore substitute for cleaners in supervising cleaning robots, especially in countries where cleaning 

robots are more prevalent (e.g. probably in Finland32). More generally, it is likely that cleaners in Finland 

                                                
32 Although specific data on cleaning robots are not available, data from the International Federation of Robotics show 

that, in 2012, industrial robots were more prevalent in Finland than in Lithuania in all areas for which data are available.  
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use more sophisticated equipment and protocols, resulting in a greater reliance on more exposed cognitive 

abilities. That being said, even in Finland, the least exposed occupation remains Cleaners and Helpers 

(Figure 7).       

Workers in Lithuania may rely more on physical abilities than in Finland because, in 2012, when these 

ability requirements were measured, technology adoption was more advanced in Finland than in Lithuania. 

That is, in 2012, technology may have already automated some physical tasks (e.g. cleaning) and created 

more cognitive tasks (e.g. reading instructions, filling out documentation, supervising cleaning robots) in 

Finland than in Lithuania, and this might have had a bigger effect on occupations that rely more on physical 

tasks (like cleaning).  
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Figure 8. Cross-country differences in occupational AI exposure are caused by differences in the 
intensity of use of abilities 

Intensity of use of an ability in Finland relative to Lithuania and progress made by AI in relation to that ability, 2012  

 

Note: Ability intensity represents the difference in the frequency of the use of an ability among Cleaner and helpers (top) or Business 

professionals (bottom) between Finland and Lithuania.   

Source: Authors’ calculations using data from the Programme for the International Assessment of Adult Competencies (PIAAC) and Felten, Raj 

and Seamans (2019[2]). 
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3.1.5. Occupational exposure to AI and education 

Section 3.1.3 showed that white-collar occupations requiring high levels of formal education are the most 

exposed to AI, while low-educated physical occupations are the least exposed.33 Figure 9 confirms this 

pattern. It shows a clear positive relationship between the share of highly educated workers within an 

occupation in 2012 and the AI exposure score in that occupation in that year (red line). By contrast, low-

educated workers were less likely to work in occupations with high exposure to AI (blue line). The 

relationship is almost flat for middle-educated workers. In 2012, 82% of highly educated workers were in 

the most exposed half of occupations, compared to 37% of middle-educated and only 16% of low-

educated.34 

Figure 9. Highly educated workers are disproportionately exposed to AI 

Average share of workers with low, medium or high education within occupations versus average exposure to AI, 

across countries (2012) 

 

Note: For each education group, occupation shares represent the share of workers of that group in a particular occupation. Each dot reports the 

unweighted average across the 23 countries analysed of the share of workers with a particular education in an occupation. 

Source: Authors’ calculations using data from the European Union Labour Force Survey (EU-LFS), the Mexican National Survey of Occupation 

and Employment (ENOE), the US Current Population Survey (US-CPS) PIAAC and Felten, Raj and Seamans (2019[2]). 

                                                
33 Again, as in the rest of the paper, exposure to AI specifically refers to potential automation of tasks, as this is 

primarily what task-based measures of exposure capture.     

34 On average across countries, there is no clear relationship between AI exposure and gender and age, see 

Figure A A.4 and Figure A A.5 in the Annex. 
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3.2. Labour market outcomes 

The analysis links occupational exposure to AI to a number of labour market outcomes: employment35, 

average hours worked36, the share of part-time workers, and the share of job postings that require AI-

related technical skills. This section presents some descriptive statistics on labour market outcomes for 

the period 2012 and 2019. 2012 is chosen as the first year for the period of analysis because it ensures 

consistency with the measure of occupational exposure to AI, for two reasons. First, the measure of 

exposure to AI is based on the task composition of occupations in 2012 for most countries.37 Second, 

progress in AI applications is measured over the period 2010-2015. As a result, AI, as proxied by the 

occupational AI exposure indicator, could affect the labour market starting from 2010 and fully from 2015 

onwards. Starting in 2012 provides a long enough observation period, while closely tracking the measure 

of recent developments in AI.  

3.2.1. Employment and working hours 

Overall, in most occupations and on average across the 23 countries, employment grew between 2012 

and 2019, a period that coincides with the economic recovery from the global financial crisis. Employment 

grew by 10.8% on average across all occupations and countries in the sample (Figure 10). Average 

employment growth was negative for only four occupations: Other Clerical Support Workers (-9.2%), 

Skilled Agricultural Workers (-8.2%), Handicraft and Printing Workers (-7.9%), and Metal and Machinery 

Workers (-1.7%). 

By contrast, average usual weekly hours declined by 0.40% (equivalent to 9 minutes per week38) on 

average over the same period (Figure 11).39 On average across countries, working hours declined in most 

occupations. Occupations with the largest drops in working hours include (but are not limited to) 

occupations that most often use part-time employment, such as Sales Workers (-2.0%); Legal, Social, 

Cultural Related Associate Professionals (-1.8%); and Agricultural, Forestry, Fishery Labourers (-1.8%). 

                                                
35 Employment includes all people engaged in productive activities, whether as employees or self-employed. 

Employment data is taken from the Mexican National Survey of Occupation and Employment (ENOE), the European 

Union Labour Force Survey (EU-LFS) and the US Current Population Survey (US-CPS). The occupation classification 

was mapped to ISCO-08 where necessary. More specifically, the ENOE SINCO occupation code was directly mapped 

to the ISCO-08 classification. The US-CPS occupation census code variable was first mapped to the SOC 2010 

classification. Next, it was mapped to the ISCO-08 classification.  

36 Hours worked refer to the average of individuals’ usual weekly hours, which include the number of hours worked 

during a normal week without any extra-ordinary events (such as leave, public holidays, strikes, sickness, or extra-

ordinary overtime). 

37 2012 is available in PIAAC for most countries except Hungary (2017), Lithuania (2014) and Mexico (2017). 

38 Estimated at the average over the sample (37.7 average usual weekly hours). 

39 Mexico is excluded from the analysis of working time due to lack of data. 
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Figure 10. Employment has grown in most occupations between 2012 and 2019 

Average percentage change in employment level across countries by occupation, 2012 to 2019 

  

Note: Occupations are classified using two-digit ISCO-08. The averages presented are unweighted averages across the 23 countries analysed. 

Source: ENOE, EU-LFS and US-CPS. 
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Figure 11. Average usual working hours have decreased in most occupations between 2012 and 
2019 

Average percentage change in average usual weekly hours across countries by occupation, 2012 to 2019 

  

Note: Occupations are classified using two-digit ISCO-08. The averages presented are unweighted averages across the 22 countries analysed 

(Mexico is excluded from the analysis of working time due to data availability). Usual weekly working hours by country-occupation cell are 

calculated by taking the average across individuals within that cell. 

Source: ENOE, EU-LFS and US-CPS. 

3.2.2. Job postings that require AI skills 

Beyond its effects on job quantity, AI may transform occupations by changing their task composition, as 

certain tasks are automated and workers are increasingly expected to focus on other tasks. This may result 

in a higher demand for AI-related technical skills as workers interact with these new technologies. However, 

it is not necessarily the case that working with AI requires technical AI skills. For example, a translator 

using an AI translation tool does not necessarily need any AI technical skills.  

This section looks at the share of job postings that require AI-related technical skills (AI skills) by occupation 

using job postings data from Burning Glass Technologies40 for the United Kingdom and the United States41. 

AI-related technical skills are identified based on the list provided in Acemoglu et al. (2020[9])42.  

                                                
40 See Box 1 for more details on Burning Glass Technologies data. The Burning Glass Occupation job classification 

(derived from SOC 2010) was directly mapped to the ISCO-08 classification. 

41 United Kingdom and the United States are the only countries in the sample with 2012 Burning Glass Technologies 

data available, thereby allowing for the examination of trends over the past decade. 

42Job postings that require AI-related technical skills are defined as those that include at least one keyword from the 

following list: Machine Learning, Computer Vision, Machine Vision, Deep Learning, Virtual Agents, Image Recognition, 

Natural Language Processing, Speech Recognition, Pattern Recognition, Object Recognition, Neural Networks, AI 
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In the United States, the share of job postings requiring AI skills has increased in almost all occupations 

between 2012 and 2019 (Figure 12). Science and Engineering Professionals experienced the largest 

increase, but growth was also substantial for Managers, Chief Executives, Business and Administration 

Professionals, and Legal, Social, Cultural Professionals. That being said, the share of job postings that 

require AI skills remains very low overall, with an average across occupations of 0.24% in 2019 (against 

0.10% in 2012). These orders of magnitude are in line with Acemoglu et al. (2020[9]) and Squicciarini and 

Nachtigall (2021[10]).  

Figure 12. Nearly all occupations have increasingly demanded AI skills between 2012 and 2019 in 
the United States 

Percentage point* change in the share of job postings that require AI skills, 2012-2019, USA 

  

Note: The share of job postings that require AI skills in an occupation is the number of job postings requiring such skills in that occupation divided 

by the total number of job postings in that same occupation. *Percentage point changes are preferred over percentage changes because the 

share of job postings that require AI skills is equal to zero in some occupations in 2012. 

Source: Burning Glass Technologies. 
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This section looks at the link between an occupation’s exposure to AI in 2012 and changes in employment, 

working hours, and the demand for AI-related technical skills between 2012 and 2019. Exposure to AI 

appears to be associated with greater employment growth in occupations where computer use is high, and 

larger reductions in hours worked in occupations where computer use is low. So, even though AI may 

substitute for workers in certain tasks, it also appears to create job opportunities in occupations that require 

digital skills. In addition, there is some evidence that greater exposure to AI is associated with greater 

increase in demand for AI-related technical skills (such as natural language processing, machine 

translation, or image recognition) in occupations where computer use is high. However, as the share of 

jobs requiring AI skills remains very small, this increase in jobs requiring AI skills cannot account for the 

additional employment growth observed in computer-intensive occupations that are exposed to AI.  

4.1. Empirical strategy 

The analysis links changes in employment levels within occupations and across countries to AI exposure.43 

The regression equation is the following: 

Yij = αj + β AIij + γ Xij  + uij (1) 

where Yij is the percentage change in the number of workers (both dependent employees and self-

employed) in occupation i in country j over the period 2012-201944; AIij is the index of exposure to AI for 

occupation i in country j as measured in 2012; Xij is a vector of controls including exposure to other 

technological advances (software and industrial robots), offshorability, exposure to international trade, and 
1-digit occupational ISCO dummies; αj are country fixed effects; and uij is the error term. The coefficient 

of interest β captures the link between exposure to AI and changes in employment. The inclusion of country 

fixed effects means that the analysis only exploits within-country variation in AI exposure to estimate the 

parameter of interest. The specifications that include 1-digit occupational dummies only exploit variation 

within broad occupational groups, thereby controlling for any factors that are constant across these groups. 

To control for the effect of non-AI technologies, the analysis includes measures of exposure to software 

and industrial robots developed by Webb (2020[7]).45 Offshoring is proxied by an index of offshorability 

                                                
43 The analysis is performed at the 2-digit level of the International Standard Classification of Occupations 2008 (ISCO-

08). 

44 In a second step, Yij will stand for the percentage change in average weekly working hours and the percentage 

change in the share of part-time workers.  

45 Webb (2020[7]) uses the overlap between the text of job descriptions provided in the O*NET database and the text 

of patents in the fields of software and industrial robots to construct measures of exposure to each of these 

technologies. To select software patents, Webb uses an algorithm developed by Bessen and Hunt (2007[42]) which 

requires one of the keywords “software”, “computer”, or “programme” to be present, but none of the keywords “chip”, 

“semiconductor”, “bus”, “circuity”, or “circuitry”. To select patents in the field of industrial robots, Webb develops an 

algorithm that results in the following search criteria: the title and abstract should include “robot” or “manipulat”, and 

4.  Results 
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developed by Firpo, Fortin and Lemieux (2011[23]) and made available by Autor and Dorn (2013[24]).46 

These three indices are occupation-level task-based measures derived from the O*NET database for the 

United States; this analysis uses those measures for all 23 countries, assuming that the cross-occupation 

distribution of these indicators is similar across countries.47 Exposure to international trade is proxied by 

the share of employment within occupations that is in tradable sectors48. These shares are derived from 

the European Union Labour Force Survey (EU-LFS), the Mexican National Survey of Occupation and 

Employment (ENOE), the US Current Population Survey (US-CPS). 

4.2. Exposure to AI and employment: a positive relationship in occupations 

where computer use is high 

As discussed in Section 1. , the effect of exposure to AI on employment is theoretically ambiguous. On the 

one hand, employment may fall as tasks are automated (substitution effect). On the other hand, productivity 

gains may increase labour demand (productivity effect) (Bessen, 2019[25]; Acemoglu and Restrepo, 

2019[26]; Acemoglu and Restrepo, 2019[27]; Lane and Saint-Martin, 2021[6]).49 The labour market impact of 

AI on a given occupation is likely to depend on the task composition of that occupation – the prevalence 

of high-value added tasks that AI cannot automate (e.g. tasks that require creativity or social intelligence) 

or the extent to which the occupation already uses other digital technologies (since AI applications are 

often similar to software in their use, workers with digital skills may find it easier to use AI effectively (Felten, 

Raj and Seamans, 2019[2])). Therefore, the following analysis will not only look at the entire sample of 

occupation-country cells, but will also split the sample according to what people do in these occupations 

and countries. 

While employment grew faster in occupations more exposed to AI, this relationship is not robust. There is 

stronger evidence that AI exposure is positively related to employment growth in occupations where 

                                                
the patent should not fall within the categories: “medical or veterinary science; hygiene” or “physical or chemical 

processes or apparatus in general”. 

46 Autor and Dorn (2013[24]) measure the potential offshoring of job tasks using the average between the two variables 

“Face-to-Face Contact” and “On-Site Job” that Firpo, Fortin and Lemieux (2011[23]) derive from the O*NET database 

(they reverse the sign to measure offshorability instead of non-offshorability). This measure captures the extent to 

which an occupation requires direct interpersonal interaction or proximity to a specific work location. Firpo, Fortin and 

Lemieux (2011[23]) define “face-to-face contact” as the average value between the O*NET variables “face-to-face 

discussions”, “establishing and maintaining interpersonal relationships”, “assisting and caring for others”, “performing 

for or working directly with the public”, and “coaching and developing others”. They define “on-site job” as the average 

between the O*NET variables “inspecting equipment, structures, or material”, “handling and moving objects”, 

“operating vehicles, mechanized devices, or equipment”, and the mean of “repairing and maintaining mechanical 

equipment” and “repairing and maintaining electronic equipment”. 

47 All three indices are available by occupation based on U.S. Census occupation codes. They were first mapped to 

the SOC 2010 6-digits classification and then to the ISCO-08 4-digit classification. They were finally aggregated at the 

2-digit level using average scores weighted by the number of full-time equivalent employees in each occupation in the 

United-States, as provided by Webb (2020[7]) and based on American Community Survey 2010 data. 

48 The tradable sectors considered are agriculture, industry, and financial and insurance activities.  

49 Partial worker substitution in an occupation may increase worker productivity and employment in the same 

occupation, but also in other occupations and sectors (Autor and Salomons, 2018[33]). These AI-induced productivity 

effects are relevant to the present cross-occupation analysis to the extent that they predominantly affect the same 

occupation where AI substitutes for workers. For example, although AI translation algorithms may substitute for part 

of the work of translators, they may increase the demand for translators by significantly reducing translation costs. 
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computer use50 is high. Table 2 displays the results of regression equation (1) without controls. When 

looking at the entire sample, the coefficient on AI exposure is both positive and statistically significant 

(Column 1), but this result is only weakly robust51. When the sample is split by level of computer use (low, 

medium, high), the coefficient on AI exposure remains positive and statistically significant only for the 

subsample where computer use is high (Columns 2-4). It remains so after successive inclusion of controls 

for international trade (i.e. shares of workers in tradable sectors), offshorability, exposure to other 

technological advances (software and industrial robots) and 1-digit occupational dummies (Table 3).52 By 

contrast, the average wage level53 of the occupation or the prevalence of creative or social tasks54 matter 

little in the link between exposure to AI and employment growth (Table A A.1).55 In occupations where 

computer use is high, a one standard deviation increase in AI exposure is associated with 5.7 percentage 

points higher employment growth (Table 2 Column 4).56  

As an additional robustness check, Table A A.2 in the Appendix replicates the analysis in Table 2 using 

the score of exposure to AI obtained when using O*NET scores of “prevalence” and “importance” of abilities 

within occupations instead of PIAAC-based measures. The results remain unchanged. Table A A.3 

                                                
50 The level of computer use within an occupation is proxied by the share of workers reporting the use of a computer 

at work in that occupation, calculated for each of the 23 countries in the sample. It is based on individuals’ answers to 

the question “Do you use a computer in your job?”, taken from the Survey of Adult Skills (PIAAC). Occupation-country 

cells are then classified into three categories of computer use (low, medium and high), where the terciles are calculated 

based on the full sample of occupation-country cells. Data are from 2012, with the exception of Hungary (2017), 

Lithuania (2014) and Mexico (2017).  

51 The coefficient is no longer statistically significant as soon as any of the controls described in Section 4.1 are 

included (with the exception of offshorability). These results are not displayed but are available on request. 

52 Table 2 and Table 3 correspond to unweighted regressions, but the results hold when each observation is weighted 

by the inverse of the number of country observations in the subsample considered, so that each country has the same 

weight. These results are not displayed but are available on request. 

53 The classification used is the country-invariant classification developed by Goos, Manning and Salomons (2014[28]), 

which classifies occupations based on their average wage relying on European Community Household Panel (ECHP) 

data. For example, occupations with an average wage in the middle of the occupation-wage distribution would be 

classified in the middle with respect to this classification. Low-skill occupations include the ISCO-08 1-digit occupation 

groups: Services and Sales Workers; and Elementary Occupations. Middle-skill occupations include the groups: 

Clerical Support Workers; Skilled Agricultural, Forestry and Fishery Workers; Craft and Related Trades Workers; and 

Plant and Machine Operators and Assemblers. High-skill occupations include: Managers; Professionals, and 

Technicians; and Associate Professionals. 

54 The prevalence of creative and social tasks is derived from PIAAC data. PIAAC data include the frequency with 

which a number of tasks are performed at the individual level. Respondents’ self-assessment are based on a 5-point 

scale ranging from “Never” to “Every day”. This information is used to measure the average frequency with which 

workers in each occupation perform creative or social tasks, and this is done separately for each country. In line with 

Nedelkoska and Quintini (2018[32]), creative tasks include: problem solving - simple problems, and problem solving - 

complex problems; and social tasks include: teaching, advising, planning for others, communicating, negotiating, 

influencing, and selling. For each measure, occupation-country cells are then classified into three categories 

depending on the average frequency with which these tasks are performed (low, medium and high). These three 

categories are calculated by applying terciles across the full sample of occupation-country cells. Data are from 2012, 

with the exception of Hungary (2017), Lithuania (2014) and Mexico (2017). 

55 Table A A.1 in Appendix shows the results obtained when replicating the analysis on the subsamples obtained by 

splitting the overall sample by average wage level, prevalence of creative tasks, or prevalence of social tasks. All 

coefficients on exposure to AI remain positive, but are weakly statistically significant and of lower magnitude than those 

obtained on the subsample of occupations where computer use is high (Table 3). 

56 The standard deviation of exposure to AI is 0.067 among high computer use occupations. Multiplying this by the 

coefficient in Column 4 gives 0.067*85.73= 5.74.  
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replicates the analysis using the alternative indicators of exposure to AI constructed by Webb (2020[7]) and 

Tolan et al. (2021[18]), described in Section 2.3.57 While the Webb (2020[7]) indicator confirms the positive 

relationship between employment growth and exposure to AI in occupations where computer use is high, 

the coefficient obtained with the Tolan et al. (2021[18]) indicator is positive but not statistically significant. 

This could be due to the fact that the Tolan et al. (2021[18]) indicator reflects different aspects of AI 

advances, as it focuses more on cognitive abilities and is based on research intensity rather than on 

measures of progress in AI applications. Both sets of results suggest a negative relationship between 

employment growth and exposure to AI among occupations where computer use is low, consistent with 

the main findings of this paper.  

Table 2. Exposure to AI is positively associated with employment growth in occupations where 
computer use is high 

Dependent variable: 2012-2019 % change in employment level 

 (1) 

All occupations 

(2) 

Low Computer Use 

(3) 

Medium Computer Use 

(4) 

High Computer Use 

Exposure to AI 13.26** -3.661 8.251 85.73** 

  (6.412) (13.19) (18.36) (36.46) 

      

Country FEs Yes Yes Yes Yes 

Observations 822 274 274 274 

R-squared 0.058 0.127 0.172 0.098 

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Each observation is a country-occupation cell. Each column shows 

the results of regression equation (1) applied to one of the subsamples obtained by splitting the overall sample by level of computer use. 

Occupation-country cells are classified into low, medium or high computer use by tercile of computer use applied across the full sample of 

occupation-country cells. 

Source: Authors’ calculations using data from ENOE, EU-LFS, US-CPS, PIAAC and Felten, Raj and Seamans (2019[2]). 

  

                                                
57 The Webb (2020[7]) indicator is available by occupation based on U.S. Census occupation codes. It was first mapped 

to the SOC 2010 6-digits classification and then to the ISCO-08 4-digit classification. It was finally aggregated at the 

2-digit level by using average scores weighted by the number of full-time equivalent employees in each occupation in 

the United States, as provided by Webb (2020[7]) and based on American Community Survey 2010 data. The Tolan 

et al. (2021[18]) indicator is available at the ISCO-08 3-digit level and was aggregated at the 2-digit level by taking 

average scores.  
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Table 3. The relationship between exposure to AI and employment growth is robust to the inclusion 
of a number of controls 

Dependent variable: 2012-2019 % change in employment level 

 (1) (2) (3) (4) (5) 

 High Computer Use Occupations 

Exposure to AI 85.73** 94.44*** 137.7*** 135.4*** 144.6** 

 (36.46) (34.71) (36.47) (40.63) (62.56) 

Share of tradable sectors  -0.143 -0.0120 -0.00931 0.157 

  (0.151) (0.145) (0.166) (0.256) 

Offshorability   -7.402** -7.371*** -9.714** 

   (2.894) (2.772) (4.630) 

Exposure to softwares    0.0103 0.00429 

    (0.190) (0.253) 

Exposure to robots    -0.0241 0.258 

    (0.280) (0.341) 

      

1-digit occupation FEs No No No No Yes 

Country FEs Yes Yes Yes Yes Yes 

      

Observations 274 274 274 274 274 

R-squared 0.098 0.101 0.127 0.127 0.173 

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Each observation is a country-occupation cell. The sample is 

restricted to occupations with high computer use. Occupation-country cells are classified into low, medium or high computer use by tercile of 

computer use applied across the full sample of occupation-country cells. Offshorability is an occupation-level measure from Autor and Dorn 

(2013[24]) based on data from the United States. Exposure to software and exposure to robots are occupation-level measures developed by 

Webb (2020[7]) based on data from the United States. The share of tradable sector represents the 2012 share of workers in the country-

occupation cell working in agriculture, industry, and financial and insurance activities. 

Source: Authors’ calculations using data from ENOE, EU-LFS, US-CPS, PIAAC, Autor and Dorn (2013[24]), Felten, Raj and Seamans (2019[2]) 

and Webb (2020[7]). 

The examples of the United Kingdom and the United States illustrate these findings clearly.58 Figure 13 

shows the percentage change in employment from 2012 to 2019 for each occupation against that 

occupation’s exposure to AI in 2012, both in the United Kingdom (Panel A) and the United States (Panel 

B). Occupations are classified according to their level of computer use. The relationship between exposure 

to AI and employment growth within computer use groups is generally positive, but the correlation is 

stronger in occupations where computer use is high. For occupations with high computer use, the most 

exposed occupations tend to have experienced higher employment growth between 2012 and 2019: 

Business Professionals; Legal, Social and Cultural Professionals; Managers; and Science & Engineering 

Professionals. AI applications relevant to these occupations include: identifying investment opportunities, 

optimising production in manufacturing plants, identifying problems on assembly lines, analysing and 

filtering recorded job interviews, and translation. In contrast, high computer-use occupations with low or 

negative employment growth were occupations with relatively low exposure to AI, such as clerical workers 

and teaching professionals.    

While further research is needed to test the causal nature of these patterns and to identify the exact 

mechanism behind them, it is possible that a high level of digital skills (as proxied by computer use) 

indicates a greater ability of workers to adapt to and use new technologies at work and, hence, to reap the 

                                                
58 Although statistically significant on aggregate, the relationships between employment growth and exposure to AI 

suggested by Table 2  are not visible for some countries.  
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benefits that these technologies bring. If AI allows these workers to interact with AI and to substantially 

increase their productivity and/or the quality of their output, this may, under certain conditions, lead to an 

increase in demand for their labour.59 

                                                
59 For productivity-enhancing technologies to have a positive effect on product and labour demand, product demand 

needs to be price elastic (Bessen, 2019[25]). 
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Figure 13. Exposure to AI is associated with higher employment growth in occupations where 
computer use is high 

Percentage change in employment level (2012 to 2019) and exposure to AI (2012) 

 

Note: Occupations are classified using two-digit ISCO-08. Not all occupations have marker labels due to space constraints. Skilled forestry, 

fishery, hunting workers excluded from Panel A for readability reasons. Occupation-country cells are classified into low, medium or high computer 

use by tercile of computer use applied across the full sample of occupation-country cells. 

Source: Authors’ calculations using data from EU-LFS, US-CPS, PIAAC and Felten, Raj and Seamans (2019[2]). 
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4.3. Exposure to AI and working time: a negative relationship among occupations 

where computer use is low 

This subsection extends the analysis by shifting the focus from the number of working individuals 

(extensive margin of employment) to how much these individuals work (intensive margin).   

In general, the higher the level of exposure to AI in an occupation, the greater the drop in average hours 

worked over the period 2012-2019; and this relationship is particularly marked in occupations where 

computer use is low. Column (1) of Table 4 presents the results of regression equation (1) using the 

percentage change in average usual weekly working hours as the variable of interest. The statistically 

significant and negative coefficient on exposure to AI highlights a negative relationship across the entire 

sample. Splitting the sample by computer use category shows that this relationship is stronger among 

occupations with lower computer use (Column 2-4). The size of the coefficients in Column 2 indicates that, 

within countries and across occupations with low computer use, a one standard deviation increase in 

exposure to AI is associated with a 0.60 percentage point greater drop in usual weekly working hours60 

(equivalent to 13 minutes per week).61 Columns 1-4 of Table 5 show that the result is robust to the 

successive inclusion of controls for international trade, offshorability, and exposure to other technologies. 

However, the coefficient on exposure to AI loses statistical significance when controlling for 1 digit 

occupational dummies (Table 5 Column 5).62 

The relationship between exposure to AI and the drop in average hours worked was driven by part-time 

employment.63 Columns 5 to 8 of Table 4 replicate the analysis in Columns 1 to 4 using the change in the 

occupation-level share of part-time workers as the variable of interest. The results are consistent with those 

in columns 2 to 4: the coefficient on exposure to AI is positive and statistically significant only for the 

subsample of occupations where computer use is low (Columns 6-8). The coefficient remains statistically 

significant and positive when controlling for international trade and offshorability, but loses statistical 

significance when controlling for exposure to other technological advances and 1-digit occupational 

dummies (Table 5 columns 6-10).64 The results hold when replacing the share of part-time workers with 

the share of involuntary part-time workers65 (Table A A.7), suggesting that the additional decline in working 

hours among low computer use occupations that are exposed to AI is not a voluntary choice by workers. 

                                                
60 The standard deviation of exposure to AI is 0.125 among low computer use occupations. Multiplying this by the 

coefficient in Column 2 gives 0.125*(-4.823) = -0.60. 

61 Estimated at the average working hours among low computer use occupations (37.2 hours). 

62 Table 4 and Table 5 correspond to unweighted regressions, but most of the results hold when each observation is 

weighted by the inverse of the number of country observations in the subsample considered, so that each country has 

the same weight. These results are not displayed but are available on request. 

63 Part-time workers are defined as workers usually working 30 hours or less per week in their main job. 

64 As an additional robustness exercise, Table A A.4 in the Appendix replicates the analysis using the score of 

exposure to AI obtained when using O*NET scores of “prevalence” and “importance” of abilities within occupations 

instead of PIAAC-based measures. The results remain qualitatively unchanged, but the coefficients on exposure to AI 

are no longer statistically significant on the subsample of occupations where computer use is low, when using working 

hours as the variable of interest. Table A A.5 and Table A A.6 replicate the analysis using the alternative indicators of 

exposure to AI constructed by Webb (2020[7]) and Tolan et al. (2021[18]). When using the Webb (2020[7]) indicator, the 

results hold on the entire sample but are not robust on the subsample of occupations where computer use is low. 

Using the Tolan et al. (2021[18]) indicator, the results by subgroups hold qualitatively but the coefficients are not 

statistically significant. 

65 Involuntary part-time workers are defined as part-time workers (i.e. workers working 30 hours or less per week) who 

report either that they could not find a full-time job or that they would like to work more hours. 
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Table 4. Exposure to AI is negatively associated with the growth in average working hours in 
occupations where computer use is low 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Dependent variable: 2012-2019 % change in working hours Dependent variable: 2012-2019 % change in part-time 

employment 

 All 

occupations 

Low 

computer 

use 

Medium 

computer 

use 

High 

computer 

use 

All 

occupations 

Low 

computer 

use 

Medium 

computer 

use 

High 

computer 

use 

         

Exposure to AI -2.680*** -4.825** -4.117 -3.189 14.85 56.56** -37.60 2.378 

  (0.895) (2.291) (3.146) (3.145) (9.951) (24.71) (94.08) (53.70) 

          

Country FEs Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 781 252 261 268 781 252 261 268 

R-squared 0.143 0.133 0.209 0.304 0.143 0.206 0.193 0.211 

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Each observation is a country-occupation cell. Each column shows 

the results of regression equation (1) applied to one of the subsamples obtained by splitting the overall sample by level of computer use. 

Occupation-country cells are classified into low, medium or high computer use by tercile of computer use applied across the full sample of 

occupation-country cells. In columns 1-4, the dependent variable is the percentage change in average usual weekly working hours. In columns 

5-8, the dependent variable is the percentage change in the share of part-time workers. Mexico is excluded from the analysis of working time 

due to data availability.  

Source: Authors’ calculations using data from EU-LFS, US-CPS, PIAAC and Felten, Raj and Seamans (2019[2]). 

Table 5. The relationship between exposure to AI and growth in average working hours is robust to 
the inclusion of a number of controls 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 Dependent variable: 2012-2019 % change in working 

hours 

Dependent variable: 2012-2019 % change in part-time 

employment 

 Low computer use occupations Low computer use occupations 

Exposure to AI -4.825** -4.891** -9.203*** -9.189** -7.157 56.56** 56.62** 49.44** 53.04 23.47 

 (2.291) (2.325) (3.186) (4.049) (4.579) (24.71) (24.67) (24.52) (35.30) (41.70) 

Share of tradable sectors  -0.0148 -0.0194* -0.0267** -0.0222  0.0135 0.00582 -0.00142 -0.0721 

  (0.0111) (0.0116) (0.0133) (0.0176)  (0.113) (0.124) (0.139) (0.167) 

Offshorability   -1.446** -0.970 -0.887   -2.409 -1.551 -2.916 

   (0.715) (0.802) (0.857)   (8.433) (11.85) (12.83) 

Exposure to softwares    0.0289 0.0350    0.0358 -0.0567 

    (0.0263) (0.0300)    (0.314) (0.376) 

Exposure to robots    -0.0270 -0.0364    0.0151 0.00943 

    (0.0385) (0.0619)    (0.447) (0.744) 

           

           

1-digit occupation FEs No No  No  No Yes  No No No  No  Yes  

Country FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 252 252 252 252 252 252 252 252 252 252 

R-squared 0.133 0.141 0.157 0.161 0.166 0.206 0.206 0.207 0.207 0.214 
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Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Each observation is a country-occupation cell. The sample is 

restricted to occupations with low computer use. Occupation-country cells are classified into low, medium or high computer use by tercile of 

computer use applied across the full sample of occupation-country cells In columns 1-4, the dependent variable is the percentage change in 

average usual weekly working hours. In columns 5-8, the dependent variable is the percentage change in the share of part-time workers. 

Offshorability is an occupation-level measure from Autor and Dorn (2013[24]) based on data from the United States. Exposure to software and 

exposure to robots are occupation-level measures developed by Webb (2020[7]) based on data from the United States. The share of tradable 

sector represents the 2012 share of workers in the country-occupation cell working in:  agriculture, industry, and financial and insurance activities. 

Mexico is excluded from the analysis of working time due to data availability.  

Source: Authors’ calculations using data from EU-LFS, US-CPS, PIAAC, Autor and Dorn (2013[24]), Felten, Raj and Seamans (2019[2]) and 

Webb (2020[7]). 

The examples of Germany and Spain provide a good illustration of these results.66 Figure 14 shows the 

percentage change in average usual weekly working hours from 2012 to 2019 for each occupation against 

that occupation’s exposure to AI, both in Germany (Panel A) and in Spain (Panel B). As before, occupations 

are classified according to their degree of computer use (low, medium, high). In both countries, there is a 

clear negative relationship between exposure to AI and the change in working hours among occupations 

where computer use is low. In particular, within the low computer use category, most occupations with 

negative growth in working hours are relatively exposed to AI. These occupations include: Drivers and 

Mobile Plant Operators, Personal Service Workers, and Skilled Agricultural Workers. AI applications 

relevant to these occupations include route optimisation for drivers, personalised chatbots and demand 

forecasting in the tourism industry67, or the use of computer vision in the agricultural sector to identify 

plants that need special attention. By contrast, low computer use occupations with the strongest growth in 

working hours are generally less exposed to AI. This is for example the case for Labourers (which includes 

labourers in transport and storage, manufacturing, or mining and construction). 

Again, while further research is required, a lack of digital skills may mean that workers are not able to 

interact efficiently with AI and thus cannot reap all potential benefits of the technology. The substitution 

effect of AI in those occupations therefore appears to outweigh the productivity effect, resulting in reduced 

working hours. However, these results remain suggestive, as they are weakly robust to the inclusion of the 

full set of controls and the use of alternative indicators of exposure to AI.  

                                                
66 Although statistically significant on aggregate, the relationships between the percentage change in average usual 

weekly working hours and exposure to AI suggested by Table 4  are not visible for some countries. 

67 For example, personalised chatbots can partially substitute for travel attendants. Demand forecasting algorithms 

may facilitate the operation of hotels, including the work of housekeeping supervisors. Travel Attendants and 

Housekeeping Supervisors both fall into the Personal Service Workers category. 



46  DELSA/ELSA/WD/SEM(2021)12 

ARTIFICIAL INTELLIGENCE AND EMPLOYMENT 
Unclassified 

Figure 14. In occupations where computer use is low, exposure to AI is negatively associated with 
the growth in average working hours  

Percentage change in average usual working hour (2012 to 2019) and exposure to AI (2012)  

 

Note: Occupations are classified using two-digit ISCO-08. Not all occupations have marker labels due to space constraints. Occupation-country 

cells are classified into low, medium or high computer use by tercile of computer use applied across the full sample of occupation-country cells.  

Source: Author’ calculations using data from EU-LFS, PIAAC and Felten, Raj and Seamans (2019[2]). 
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4.4. Exposure to AI and demand for AI-related technical skills: a weak but 

positive relationship among occupations where computer use is high 

Beyond its effects on employment, AI may also transform occupations as workers are increasingly 

expected to interact with the technology. This may result in a higher demand for AI-related technical skills 

in affected occupations, although it is not necessarily the case that working with AI requires technical AI 

skills. 

Indeed, exposure to AI is positively associated with the growth in the demand for AI technical skills, 

especially in occupations where computer use is high. Figure 15 shows the correlation between the growth 

in the share of job postings that require AI skills from 2012 to 2019 within occupations and occupation-

level exposure to AI for the United Kingdom (Panel A) and the United States (Panel B), the only countries 

in the sample with BGT time series available. Occupations are again classified according to their computer 

use. There is a positive correlation between the growth in the share of job postings requiring AI skills and 

the AI exposure measure, particularly among occupations where computer use is high. The most exposed 

of these occupations (Science and Engineering Professionals; Managers; Chief Executives; Business and 

Administration Professionals; Legal, Social, Cultural professionals) are also experiencing the largest 

increases in job postings requiring AI skills.   

However, the increase in jobs requiring AI skills cannot account for the additional employment growth 

observed in computer-intensive occupations that are exposed to AI (despite the similarities between the 

patterns displayed in Figure 13 and Figure 15). As highlighted by the different scales in those two charts, 

the order of magnitude of the correlation between exposure to AI and the percentage change in 

employment (Figure 13) is more than ten times that of the correlation between exposure to AI and the 

percentage point change in the share of job postings requiring AI skills (Figure 15).68 This is because job 

postings requiring AI skills remain a very small share of overall job postings. In 2019, on average across 

the 36 occupations analysed, job postings that require AI skills accounted for only 0.14% of overall postings 

in the United Kingdom and 0.24% in the United States. By contrast, across the same 36 occupations, 

employment grew by 8.82% on average in the United States and 11.15% in the United Kingdom between 

2012 and 2019.  

                                                
68 The results of the regression equation (1) on the subsample (of only 26 observations) of high computer use 

occupations in the United Kingdom and the United States give a coefficient on exposure to AI equal to 151.4 when 

using percentage employment growth as the variable of interest, which is about forty times greater than the 4.1 

obtained when using percentage point change in the share of job postings that require AI skills as the variable of 

interest.  
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Figure 15. High computer use occupations with higher exposure to AI saw a higher increase in 
their share of job postings that require AI skills 

Percentage point change in the share of job postings that require AI skills (2012 to 2019) and exposure to AI (2012)  

 

Note: The share of job postings that require AI skills in an occupation is taken as a share of the total number of job postings in that occupation. 

Occupation-country cells are classified into low, medium or high computer use by tercile of computer use applied across the full sample of 

occupation-country cells. 

Source: Author’ calculations using data from Burning Glass Technologies, PIAAC and Felten, Raj and Seamans (2019[2]). 
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Annexe A. Additional results 

Figure A A.1. Robustness – Alternative measure of exposure to AI based on O*NET data 

Occupational exposure to AI, USA 

 

Note: The average presented is unweighted. 

Source: Authors’ calculations using data from the Occupational Information Network (O*NET) database and Felten, Raj and Seamans (2019[2]). 
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Figure A A.2. Robustness – Alternative measure of ability intensity based on O*NET data 

Intensity of use of an ability relative to the average across occupations and progress made by AI in relation to that 

ability, USA 

 

Note: Ability intensity represents the frequency of the use of an ability among Cleaner and helpers (top) or Business professionals (bottom) 

minus the frequency of the use an that ability averaged across the 36 occupations in the sample.   

Source: Authors’ calculations using data from the Occupational Information Network (O*NET) database and Felten, Raj and Seamans (2019[2]). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04
Progress made by AI Ability intensity 

A. Cleaners and helpers

Ability intensity relative to the average occupation Progress made by AI in relation to the ability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Progress made by AIAbility intensity 

B. Business and administration professionals

Ability intensity relative to the average occupation Progress made by AI in relation to the ability



DELSA/ELSA/WD/SEM(2021)12  51 

ARTIFICIAL INTELLIGENCE AND EMPLOYMENT 
Unclassified 

Figure A A.3. The most exposed cleaners and helpers remain half as exposed as the least exposed 
business professionals 

Exposure to AI  

 

Source: Authors’ calculations using data from PIAAC and Felten, Raj and Seamans (2019[2]). 
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Figure A A.4. There is no clear relationship between exposure to AI and gender 

Average occupation share (by gender) versus average exposure to AI, across countries and by occupation (2012) 

 

Note: For each gender, occupation shares represent the share of workers of that gender in a particular occupation. Each dot reports the 

unweighted average across the 23 countries analysed of the share of women or men in an occupation. 

Source: Author’ calculations using data from ENOE, EU-LFS, US-CPS, PIAAC and Felten, Raj and Seamans (2019[2]). 
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Figure A A.5. There is no clear relationship between exposure to AI and age 

Average occupation share (by age group) versus average exposure to AI, across countries and by occupation 

(2012) 

 

Note: For each age group, occupation shares represent the share of workers of that group in a particular occupation. Each dot reports the 

unweighted average across the 23 countries analysed of the share of workers of a particular age group in an occupation. 

Source: Author’ calculations using data from ENOE, EU-LFS, US-CPS, PIAAC and Felten, Raj and Seamans (2019[2]). 

Table A A.1. The average wage level and the prevalence of creative and social tasks matter little in 
the link between exposure to AI and employment growth 

Dependent variable: 2012-2019 % change in employment level 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Average wage level Creative tasks Social tasks 

Low Medium High Low Medium High Low Medium High 

Exposure to AI 4.172 45.90* -17.78 37.70 -1.316 10.32 45.73* 6.563 20.37 

  (21.21) (26.60) (45.20) (25.81) (33.62) (50.85) (26.22) (23.46) (43.79) 

          

Share of manufacturing Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Share of service sector Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Offshorability Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Exposure to software Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Exposure to robots Yes Yes Yes Yes Yes Yes Yes Yes Yes 

1-digit occupation FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes 

 Country FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes 

          

Observations 204 319 299 274 274 274 274 274 274 

R-squared 0.360 0.197 0.144 0.227 0.262 0.187 0.240 0.358 0.185 
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Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Each observation is a country-occupation cell. Column 1-3, 4-6 and 

7-9 show the results of regression equation (1) applied to the subsamples obtained by splitting the overall sample by average wage level, 

prevalence of creative tasks and prevalence of social tasks respectively. The average wage level corresponds to the country-invariant wage-

based classification used in (Goos, Manning and Salomons, 2014[28]). Occupation-country cells are classified into low, medium or high 

prevalence of creative tasks/social tasks by tercile of prevalence of creative tasks/social tasks applied across the full sample of occupation-

country cells.  All columns include the full set of controls used in Table 3 Column 5. Offshorability is an occupation-level measure from Autor 

and Dorn (2013[24]) based on data from the United States. Exposure to software and exposure to robots are occupation-level measures 

developed by Webb (2020[7]) based on data from the United States. The share of tradable sector represents the 2012 share of workers in the 

country-occupation cell working in: agriculture, industry, and financial and insurance activities. 

Source: Authors’ calculations using data from ENOE, EU-LFS, US-CPS, PIAAC, Autor and Dorn (2013[24]), Felten, Raj and Seamans (2019[2]) 

and Webb (2020[7]). 

Table A A.2. Exposure to AI and employment growth – O*NET 

Dependent variable: 2012-2019 % change in employment level 

 (1) 

All occupations 

(2) 

Low computer use 

(3) 

Medium computer use 

(4) 

High computer use 

Exposure to AI (O*NET) 17.87*** 9.084 -5.046 58.78** 

  (6.333) (22.49) (14.38) (23.71) 

      

Country FEs Yes Yes Yes Yes 

Observations 822 274 274 274 

R-squared 0.063 0.128 0.172 0.094 

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Each observation is a country-occupation cell. Each column shows 

the results of regression equation (1) applied to one of the subsamples obtained by splitting the overall sample by level of computer use. 

Exposure to AI is based on O*NET scores of “prevalence” and “importance” of abilities within occupations instead of PIAAC data. Occupation-

country cells are classified into low, medium or high computer use by tercile of computer use applied across the full sample of occupation-

country cells. 

Source: Authors’ calculations using data from ENOE, EU-LFS, US-CPS, PIAAC, O*NET and Felten, Raj and Seamans (2019[2]). 

Table A A.3. Exposure to AI and employment growth – Alternative measures of exposure to AI 

Dependent variable: 2012-2019 % change in employment level 

 (1) 

All 

occupations 

(2) 

Low 

computer 

use 

(3) 

Medium 

computer 

use 

(4) 

High 

computer 

use 

(5) 

All 

occupations 

(6) 

Low 

computer 

use 

(7) 

Medium 

computer 

use 

(8) 

High 

computer 

use 

Exposure to AI (Webb) -0.0364 -0.479*** -0.0304 0.283***         

  (0.0544) (0.0912) (0.0679) (0.104)         

Exposure to AI (Tolan)         1.922 -37.45*** -12.37** 15.89 

          (4.049) (9.787) (5.840) (11.96) 

                  

Observations 822 274 274 274 822 274 274 274 

R-squared 0.053 0.214 0.172 0.099 0.052 0.171 0.183 0.083 

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Each observation is a country-occupation cell. Each column shows 

the results of regression equation (1) applied to one of the subsamples obtained by splitting the overall sample by level of computer use. The 

dependent variable is the percentage change in employment levels. Exposure to AI is based on the indicators constructed by Webb (2020[7]) 

and Tolan et al. (2021[18]), and described in Section 2.3. Occupation-country cells are classified into low, medium or high computer use by tercile 

of computer use applied across the full sample of occupation-country cells. 

Source: Authors’ calculations using data from ENOE, EU-LFS, US-CPS, Webb (2020[7]) and Tolan et al. (2021[18]). 
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Table A A.4. Exposure to AI and working time – O*NET  

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Dependent variable: 2012-2019 % change in 

working hours 

Dependent variable: 2012-2019 % change in part-

time employment 

 All 

occupatio

ns 

Low 

computer 

use 

Medium 

computer 

use 

High 

computer 

use 

All 

occupatio

ns 

Low 

computer 

use 

Medium 

computer 

use 

High 

computer 

use 

Exposure to AI (O*NET) -2.410*** -4.401 -3.036 -2.105 10.21 74.67** -1.714 -15.30 

  (0.923) (3.135) (2.455) (2.504) (10.06) (36.75) (62.56) (46.35) 

          

Country FEs Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 781 252 261 268 781 252 261 268 

R-squared 0.141 0.128 0.208 0.303 0.142 0.207 0.192 0.212 

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Each observation is a country-occupation cell. Each column shows 

the results of regression equation (1) applied to one of the subsamples obtained by splitting the overall sample by level of computer use. In 

columns 1-4, the dependent variable is the percentage change in average usual weekly working hours. In columns 5-8, the dependent variable 

is the percentage change in the share of part-time workers. Exposure to AI is based on O*NET scores of “prevalence” and “importance” of 

abilities within occupations instead of PIAAC data. Occupation-country cells are classified into low, medium or high computer use by tercile of 

computer use applied across the full sample of occupation-country cells. Mexico is excluded from the analysis of working time due to data 

availability. 

Source: Authors’ calculations using data from EU-LFS, US-CPS, PIAAC, O*NET and Felten, Raj and Seamans (2019[2]). 

Table A A.5. Exposure to AI and average working hours – Alternative measures of exposure to AI 

Dependent variable: 2012-2019 % change in working hours 

 (1) 

All 

occupatio

ns 

(2) 

Low 

computer 

use 

(3) 

Medium 

computer 

use 

(4) 

High 

computer 

use 

(5) 

All 

occupatio

ns 

(6) 

Low 

computer 

use 

(7) 

Medium 

computer 

use 

(8) 

High 

computer 

use 

Exposure to AI (Webb) -0.0212*** -0.00423 -0.0290** -0.0226**     

  (0.00702) (0.0170) (0.0121) (0.00883)     

Exposure to AI (Tolan)     -0.466 -1.849 2.161 1.858 

      (0.638) (1.701) (1.320) (1.168) 

          

Observations 786 254 262 270 786 254 262 270 

R-squared 0.140 0.123 0.224 0.314 0.132 0.126 0.213 0.310 

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Each observation is a country-occupation cell. The dependent 

variable is the percentage change in average usual weekly working hours. Exposure to AI is based on the indicators constructed by Webb 

(2020[7]) and Tolan et al. (2021[18]), and described in Section 2.3. Each column shows the results of regression equation (1) applied to one of 

the subsamples obtained by splitting the overall sample by level of computer use. Occupation-country cells are classified into low, medium or 

high computer use by tercile of computer use applied across the full sample of occupation-country cells. Mexico is excluded from the analysis 

of working time due to data availability. 

Source: Authors’ calculations using data from EU-LFS, US-CPS, PIAAC, Webb (2020[7]) and Tolan et al. (2021[18]). 
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Table A A.6. Exposure to AI and part-time employment – Alternative measures of exposure to AI 

Dependent variable: 2012-2019 % change in part-time employment 

 (1) 

All 

occupatio

ns 

(2) 

Low 

computer 

use 

(3) 

Medium 

computer 

use 

(4) 

High 

computer 

use 

(5) 

All 

occupatio

ns 

(6) 

Low 

computer 

use 

(7) 

Medium 

computer 

use 

(8) 

High 

computer 

use 

Exposure to AI (Webb) 0.278** 0.110 0.591** 0.0606     

  (0.118) (0.148) (0.275) (0.156)     

Exposure to AI (Tolan)     -3.194 36.63 -32.20 -20.12 

      (6.544) (24.68) (20.28) (15.79) 

          

Observations 781 252 261 268 781 252 261 268 

R-squared 0.148 0.195 0.209 0.211 0.142 0.206 0.197 0.216 

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Each observation is a country-occupation cell. The dependent 

variable is the percentage change in the occupation-level share of part-time workers. Exposure to AI is based on the indicators constructed by 

Webb (2020[7]) and Tolan et al. (2021[18]), and described in Section 2.3. Each column shows the results of regression equation (1) applied to 

one of the subsamples obtained by splitting the overall sample by level of computer use.  Occupation-country cells are classified into low, 

medium or high computer use by tercile of computer use applied across the full sample of occupation-country cells. Mexico is excluded from the 

analysis of working time due to data availability. 

Source: Authors’ calculations using data from EU-LFS, US-CPS, PIAAC, Webb (2020[7]) and Tolan et al. (2021[18]). 

Table A A.7. Exposure to AI is positively associated with growth in involuntary part-time 
employment in occupations where computer use is low 

Dependent variable: 2012-2019 percentage point change in involuntary part-time employment 

 (1) 

All occupations 

(2) 

Low computer use 

(3) 

Medium computer use 

(4) 

High computer use 

Exposure to AI 3.646*** 8.982*** 6.411*** 0.489 

 (0.789) (1.816) (2.129) (1.799) 

     

Observations 781 252 261 268 

R-squared 0.389 0.466 0.400 0.633 

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Each observation is a country-occupation cell. The dependent 

variable is the percentage point change in the occupation-level share of involuntary part-time workers. Percentage point change is preferred 

over percentage change because the share of involuntary part-time workers is equal to zero in some occupations in 2012. Each column shows 

the results of regression equation (1) applied to one of the subsamples obtained by splitting the overall sample by level of computer use. 

Occupation-country cells are classified into low, medium or high computer use by tercile of computer use applied across the full sample of 

occupation-country cells. Mexico is excluded from the analysis of working time due to data availability. 

Source: Authors’ calculations using data from EU-LFS, US-CPS, PIAAC and Felten, Raj and Seamans (2019[2]). 
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