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Abstract 

Artificial Intelligence (AI) scoring for constructed-response items using recent advancements in 

multilingual, deep learning techniques utilising models pre-trained with a massive multilingual text 

corpus, is examined using international large-scale assessment data. Historical student responses to 

Reading and Science literacy cognitive items developed under the PISA analytical framework are used 

as training data for deep learning together with multilingual data to construct an AI model. The trained 

AI models are then used to score and the results compared with human-scored data. The score 

distributions estimated based on the AI-scored data and the human-scored data are highly consistent 

with each other; furthermore, even item-level psychometric properties of the majority of items showed 

high levels of agreement, although a few items showed discrepancies. This study demonstrates a 

practical procedure for using a multilingual data approach, and this new AI-scoring methodology 

reached a practical level of quality, even in the context of an international large-scale assessment.  
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1. Introduction 

1.1. Constructed-response item in educational assessment 

Educational assessments are conducted primarily for achievement surveys or the selection of test 

takers; however, they are not limited only to such purposes. In the literature, various effects of 

educational assessments are reported. For example, the design of a test affects test takers' learning 

strategy, motivation, and achievement (Crooks, 1988[1]; Harkins, 2001[2]). Furthermore, consolidation 

(Halpin and Halpin, 1982[3]; Nungester and Duchastel, 1982[4]) and self-regulation of learning are 

considered important benefits of taking educational assessments (Bloom, Hastings and Madaus, 

1971[5]; Butler and Winne, 1995[6]). Hence, an assessment of learners can be influential, especially in 

a large-scale assessment. It is thus argued that the design of large-scale assessments should be based 

not only on the validity and reliability of assessments, but also on consideration of the social and ethical 

impact of how the results are interpreted and used (Frederiksen and Collins, 1989[7]; Messick, 1989[8]).  

Mainly, there are two types of response formats in educational assessments: selected-response formats 

and constructed-response formats. The single-best answer type for multiple-choice questions is the 

most frequently used of the selected-response formats, which can be automatically scored if it is a 

computer-based assessment (CBA) without being subject to human error. Regarding the single-best 

type, test takers are not required to construct their own responses or show a process of leading students’ 

responses based on their organised knowledge; thus, this type of item is occasionally criticised for the 

validity of measures. Multiple-choice formats are sometimes considered unfavourable because of the 

potential for guessing, which prejudices the reliability of the proficiency estimates. However, some 

research has revealed that test takers do not always guess, and instead select responses from a subset 

of the total item options, depending on proficiency (Downing, 2003[9]; Haladyna, 2004[10]). Therefore, 

the criticisms of the selected-response formats in terms of reliability are not widely justifiable. 

Constructed-response formats demand that test takers write their responses in the form of one or more 

sentences, in which many response patterns can be correct. It is known that only skilled and  

well-trained raters can make reliable and valid judgements (Stalnaker, 1951[11]). Among constructed-

response formats, the essay format (e.g., over 200 words) sometimes aims to measure writing skills in 

addition to the proficiency of the target domain; however, it is not the focus of this paper. Note that not 

all constructed-response items measure complex and higher-order cognitive ability, despite being 

generally regarded as drawing on higher-order cognitive processes. What is measured depends not only 

on the response format of an item, but also on its content (Jolly, 2010[12]). Some studies have revealed 

that the reliabilities of constructed-response items, including performance assessments, have a large 

variance in the interaction term between respondents and items (Brennan, 2001[13]), which implies that 

the scores of a respondent depend on the item contents involved in the assessment. Therefore, 

constructed-response items should cover a wide range of content to ensure both the validity and 

reliability of measures, meaning many items are needed in test forms.  

Although assessing test takers with constructed-response formats has meaningful effects on learners, 

some assessments and examinations employ only multiple-choice items to reduce costs, improve the 

accuracy of scoring in practice, and reduce the duration between test taking and the provision of results. 

In the OECD Programme for International Student Assessment (PISA), approximately one-third of 

cognitive items are constructed-response items (OECD, n.d.[14]). In PISA, in order to reduce the cost 

of scoring cognitive items and coding a few open-ended student questionnaires, the machine-supported 

coding system (MSCS) is implemented (Yamamoto et al., 2018[15]), where it automatically scores the 

student responses based on the judgements given by the human raters in the past PISA cycles only if 

the student responses appear in the historical data. MSCS has succeeded in improving efficiencies by 

about 20%-32% depending on domains in PISA 2018 (OECD, n.d.[14]). The MSCS employs perfect 

pattern-matching techniques; therefore, many student responses that are almost the same as historical 

data are not scored/coded automatically, although the contents of the items are equivalent. 
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1.2. Deep learning technology and AI scoring 

Artificial intelligence (AI) scoring for essay-type items using natural language processing (NLP) 

techniques has been used in large-scale assessment (Shermis, Burstein and Leacock, 2006[16]). In most 

cases, intermediate indices are calculated based on the student’s essay, with a focus on writing elements 

such as the number of total words, word complexity, and proportion of grammar errors so that a 

student’s final score is computed based on the intermediate indices. In AI scoring for essays, the scoring 

methodology is more accurate when the student’s essay is long enough to contain sufficient 

information. For details of AI scoring for essay-type items, see Ramesh and Sanampudi (2022[17]).   

In PISA, constructed-response items are not designed to measure writing skills, but to assess the quality 

of a student’s thinking rather than the student’s final response itself (OECD, 2019[18]). Hence, the 

techniques and methodologies developed for scoring essay-type items are not aligned with PISA 

cognitive items. Although the MSCS is implemented in PISA, only the pattern-matching technique is 

applied, and deep learning technology is not yet applied for the item scorings in PISA. Leacock and 

Chodorow (2003[19]) introduced an automated scoring system for short constructed-response items; 

however, the applicable area of the technique was limited.  

Recent technological developments in deep learning algorithms have been tremendous. Deep learning 

has been applied in many areas and has shown high performance on various tasks such as classification. 

Transformer is a deep learning technique proposed in Vaswani, et al. (2017[20]), which is a neural 

network model that learns context and meaning by tracking relationships in sequential data. In 

Transformer, Self-Attention and Position-wise Feed-Forward Network are incorporated in an  

encoder-decoder model, it has proven to perform better at some tasks than earlier models (Hu et al., 

2020[21]). Therefore, Transformer models can be considered as a model that suits the task of 

automatically scoring constructed-response items.  

In the current study, a deep learning model is applied for the scoring task of PISA-type, short 

constructed-response items, and the psychometric property of the AI scoring is examined. 

Comparability of the scores across countries/economies is crucial in international large-scale 

assessments (ILSAs); hence, the item functioning of each country/economy is examined carefully for 

all items. The same logic should be applied for scoring methodologies, where the item functioning 

given by the AI model should be equivalent to that by the human raters in every context since it directly 

impacts the student proficiency distribution.  

1.3. International large-scale assessment and multilingual AI model 

ILSAs are frequently delivered in multiple languages, so that test candidates can be tested in their 

language of instruction. Verified translations of coding guides are taken to be equivalent and are the 

lynchpin of training human raters for the constructed-response items in the test instruments. The 

invariance of item functioning is taken as evidence of the equivalence of the national scoring panels 

(OECD, n.d.[14]). However, there is little doubt that maintaining scoring standards across different 

panels of raters, whether from year to year or country to country, is complex and difficult. As a result, 

there is likely to be some variation in reliability and accuracy from panel to panel.  

The use of AI scoring for constructed-response items in ILSAs raises several questions about whether 

equivalence can be improved across the different languages in which an ILSA is delivered, given that 

AI modelling of responses does not change on its own over time. However, other questions arise 

because AI scoring models are not based on verified translations of coding guides but on corpora of 

scored responses, and there may be idiosyncrasies in the human scoring. This study examines the 

ability of a deep learning model to accurately predict scores across multiple languages.  
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Modelling approaches that aim at cross-lingual understanding are increasing, where low-resource 

languages in terms of training data can be supported by the other language data and existing datasets 

such as BERT (Devlin et al., 2018[22]), RoBERTa (Liu et al., 2019[23]), T5 (Raffel et al., 2020[24]), and 

XLM-R (Conneau et al., 2019[25]). These modelling approaches can be trained with student responses 

from various languages in an ILSA, the resulting model can then be used to predict scores from 

responses in the various languages, and this has the potential to increase the international comparability 

of the scores as well as the accuracy of scoring. This can be a turning point for ILSAs. Before these 

modelling approaches appeared, multilingual data was considered a risk to comparability; however, 

their introduction may facilitate mutual support in data analysis across countries.  

1.4. Objective and overview 

In this study, the psychometric property of AI scoring using deep learning technology is examined. 

ILSA data is used with a particular focus on the accuracy of AI scoring statistics at the 

country/economy level. To analyse differences in the psychometric property of the AI model between 

languages, various sets of training data by languages are prepared. Furthermore, a modelling approach 

that incorporates a multilingual dataset is also considered in this study. A new scaling model is also 

proposed, which aims to increase the reliability and validity of the scoring by updating the 

methodology frequently used in ILSAs.  

The overarching research question is, how can deep learning technology contribute to improvements 

in the assessment processes and subsequent outcomes of international large-scale assessments? The 

concrete questions identified and examined in this study are as follows.  

1. When compared to human marking, how accurate is AI scoring using the recent deep learning 

technology compared with human scoring? Is language the main factor that impacts scoring 

accuracy? How many student responses should be prepared to train deep learning models in 

ILSAs? 

2. Is it possible to build an efficient and accurate multilingual scoring model that can be applied to 

all of the languages that respondents use? Is such a model more accurate than using a set of 

language-specific models?  

3. Are there ways to refine and improve the validity of initial deep learning scores? From a modelling 

perspective, should certainty of predicted scores be taken into account when estimating student 

proficiencies?  

This study aims to examine the above-mentioned questions by using data from different language 

versions of the PISA-based Test for Schools (PBTS). The cognitive items of PBTS were developed by 

the Australian Council of Education Research (ACER, 2012[26]) under the analytical framework of 

PISA and were validated in a field trial. The PBTS is currently only delivered as a CBA, and it has 

collected student responses across more than 15 countries. The scale of PBTS is aligned with that of 

PISA; thus, the scales and constructs are comparable with PISA (Okubo et al., 2021[27]).   

The remainder of this paper is structured as follows. In section 2, the data and methodology used in the 

present study are introduced. Information on the PBTS is also provided in this section. Section 3 reports 

the psychometric properties of the AI scoring applied to the PBTS data, the accuracy of the  

country-level score estimates of different groups (i.e., different languages) are investigated, and the 

item functioning in each AI training condition is assessed. A new scaling model that fits AI scoring is 

proposed and examined in section 4, and lastly, the summary and discussions are provided in section 

5.  
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2. Data illustration 

2.1. Constructed-response items used in the PISA-based Test for Schools  

In the PBTS, there are 65 constructed-response items, of which 39 items are scored by human raters, 

and the rest are scored automatically or semi-automatically. In semi-automatic scoring, an exact 

matching technique is applied to student responses based on historical data that the scoring system 

references. Otherwise, if the number of correct response strings is limited, such as the keyword-input 

items in mathematics (MATH), the list of correct response strings is used for exact matching. The 

student responses that do not match the historical data or the correct response list will be scored by 

humans. The semi-automatic method improves the efficiency of the human scoring depending on the 

complexity of the student responses. Thus, the only technique used for improving the efficiency of 

scoring is exact pattern matching in PBTS.  

Table 1 shows the proportions of the human-scored items and the constructed-response items in PBTS. 

In PBTS, the proportion of constructed-response items across mathematics (MATH), reading (READ), 

and science (SCIE) is 46.4%, while that of human-scored items is 27.9%; some short  

constructed-response items are scored automatically in PBTS (OECD, 2016[28]). Since the proportion 

of human-scored items is small in MATH, only READ and SCIE are the focus of this study. 

Specifically, the 37 human-scored items in READ and SCIE are the targets to be scored by AI. The 

items scored automatically (e.g., multiple-choice items, etc.) were kept in the dataset and used for the 

scaling analyses, which follows that no human resource was used at all for the scoring tasks during the 

experiment settings since the AI models scored the student responses of the constructed-response items.  

Table 1: Proportion of human-scored items and all constructed-response items in PBTS 

Domain Subdomain 
N of human-scored 

items (%) 

N of constructed-

response items (%) 
N of items 

MATH 

Employing 2 (10.0%) 15 (75.0%) 20 

Formulating 0 (0.0%) 7 (63.6%) 11 

Interpreting 0 (0.0%) 3 (33.3%) 9 

Sub-total 2 (5.0%) 25 (62.5%) 40 

READ 

Access and retrieve 2 (11.8%) 4 (23.5%) 17 

Integrate and interpret 9 (50.0%) 9 (50.0%) 18 

Reflect and evaluate 7 (63.6%) 7 (63.6%) 11 

Sub-total 18 (39.1%) 20 (43.5%) 46 

SCIE 

Evaluate and plan 3 (25.0%) 3 (25.0%) 12 

Explain 11 (50.0%) 11 (50.0%) 22 

Scientifically interpret 5 (25.0%) 6 (30.0%) 20 

Sub-total 19 (35.2%) 20 (37.0%) 54 

Total 39 (27.9%) 65 (46.4%) 140 

2.2. Training data for AI scoring  

In PBTS, the student’s raw responses to the human-scored items are presented to the human raters on 

the scoring platform provided by the international platform provider (i.e., Janison). The student’s raw 

responses are randomly assigned to the human raters, and more than 20% of the student responses are 

presented multiple times to different human raters in order to check raters’ scoring consistency on each 

task. When double-scored responses are discrepant, senior raters adjudicate the final score. In this study, 

double-scored student responses that received consistent scores from both raters were used as the 
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training data. The scoring accuracy of human-scored items in PBTS was measured by dividing the 

proportion of consistently scored responses to the double-coded responses by the total number of the 

double-scored items.  

In this study, datasets from different countries were used. These datasets were initially combined into 

four datasets (groups), as some of them share the same languages, although they are not completely 

the same. In addition to this, two distinct populations (cycle-1 and cycle-2) were prepared in one 

language group. Consequently, in total, five datasets (groups) were prepared for this study. Table 2 

shows the descriptive statistics of the human-scored responses of the five groups, which includes the 

following datasets; language-A (group-A), language-B (group-B), language-C (C1 and C2; groups C1 

and C2), and language-D (group-D). Single-scored student responses were scored by one rater, whereas 

double-and triple-scored responses were scored by multiple raters. The percentage of double-scored 

responses also refers to the percentage of double-scored responses in each country that received 

consistent ratings from both human raters. The percentage of triple-scored responses refers to the 

percentage of double-scored responses that received inconsistent ratings from the human raters. The 

definition of scoring accuracy used in this study is defined in section 2.4. 

The proportions of the triple-scored responses varied from group to group; group-A had the highest 

proportion of triple-scored responses, meaning that this dataset had the lowest level of inter-rater 

agreement. On the other hand, group-C2 had the highest agreement among the groups. One 

considerable reason for this is that the human raters improved their scoring skills from the first to the 

second testing cycle. Details of the scoring accuracy are provided in section 3.1. The proportions of 

blank responses are also distributed widely, which is the function of the group’s proficiency levels in 

the domains. In this study, the blank responses are treated in accordance with the PISA methodology 

(See PISA technical report (OECD, n.d.[14]) for details). The average percentage of single-scored, 

double-scored, and triple-scored responses across the groups in READ were 57.8%, 31.4 %, and 2.8%, 

respectively, and in SCIE the comparative average percentages were 55.5%, 26.8%, and 3.6%. 

Table 2: Frequencies of scoring of students' responses by groups 

Condition Domain 
Single-scored 

responses 

Double-scored 

responses 

Triple-scored 

responses 

Blank 

responses 

Human-A 
READ 42.7% 44.6% 7.6% 5.1% 

SCIE 50.4% 33.9% 8.1% 7.7% 

Human-B 
READ 71.1% 16.0% 1.9% 11.0% 

SCIE 65.5% 15.3% 1.3% 17.9% 

Human-C1 
READ 72.2% 17.6% 1.7% 8.5% 

SCIE 64.1% 17.3% 1.9% 16.8% 

Human-C2 
READ 72.3% 17.6% 0.9% 9.2% 

SCIE 66.1% 15.6% 1.0% 17.3% 

Human-D 
READ 30.9% 61.1% 1.8% 6.2% 

SCIE 31.2% 52.5% 5.5% 10.8% 

Average 
READ 57.8% 31.4% 2.8% 8.0% 

SCIE 55.5% 26.9% 3.6% 14.1% 
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2.3. Training data and target data to be analysed 

In order to examine the psychometric properties of the AI scoring, different conditions were prepared. 

There were three factors in these conditions, namely, the training data language, the number of 

responses used to train the AI, and the target data to be scored by trained AI. The training data included 

four languages from different language families.  In two groups (i.e., two different languages; groups 

A and B), three different conditions of training responses were set in order to see the impact of the size 

of data used for training. Further, the different target data were analysed in language-C in order to 

assess the stability of the AI scoring and the human scoring between the two different testing cycles.  

In addition to the factors mentioned above, four training datasets that combined different languages 

were prepared (i.e., multilingual training datasets). Here, responses were used without translation into 

a single language. In total, there were 15 different conditions set in the training data (Table 3). Note 

that the students in each group were not representative of a country or a language, and that they were 

taken partly from the original datasets. Furthermore, the different scaling coefficients are applied to 

the scores for the groups. As such, the statistical indices and scores calculated in this study should not 

be interpreted as representative of any country’s/economy’s broader characteristics. Please note that 

the student responses used for the AI training contained some identical (or quite similar) student 

responses within a training dataset; therefore, the number of training responses was not equal to the 

number of students’ response patterns in the dataset.   

Table 3: Training data and target data to be analysed 

# Condition Training data Language N of training responses Target data 
N of target 

students 

1 AI300-A 

Group-A A 

300 

Group-A 6 809 2 AI600-A 600 

3 AI800-A 800 

4 AI300-B 

Group-B B 

300 

Group-B 20 347 5 AI600-B 600 

6 AI1000-B 1 000 

7 AI1000C1-C1 Group-C1 

C 

1 000 
Group-C1 51 237 

8 AI1000C2-C1 Group-C2 1 000 

9 AI1000C1-C2 Group-C1 1 000 
Group-C2 47 401 

10 AI1000C2-C2 Group-C2 1 000 

11 AI300-D Group-D D 360 Group-D 5 244 

12 AImix-A Mix of groups mixed 600 * 3 (A, B, C2) + 360 (D) Group-A 6 809 

13 AImix-B Mix of groups mixed 600 * 3 (A, B, C2) + 360 (D) Group-B 20 347 

14 AImix-C1 Mix of groups mixed 600 * 3 (A, B, C2) + 360 (D) Group-C1 51 237 

15 AImix-D Mix of groups mixed 600 * 3 (A, B, C2) + 360 (D) Group-D 5 244 

 

AI training was performed item by item, and no information, other than student responses to the 

cognitive items, was included in the training data. Predicted scores of the items by the trained AI were 

saved in the cognitive dataset together with the other automatically scored items, such as the multiple-

choice items. Data analyses were performed for each dataset. In the present study, the student responses 

used for AI training were also included in the target data to be analysed. This is because the trained AI 

model did not always result in perfectly accurate predictions, even on training dataset responses. 

Moreover, excluding student responses used for AI training may have jeopardised the stability of 

conditional distributions of student proficiency, leading to undesirable errors in these estimations. 

Furthermore, across test cycles, a substantial number of student responses were highly similar. 
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Therefore, excluding the trained responses risked losing this nuance in the data. Note, however, that in 

Table 3, the target data in conditions 8 and 9 did not contain any training data in target data to be scored. 

These two conditions allowed the AI models to be tested without any training data. 

Table 4 reports the average number of human-scored items that students actually responded to in the 

test, and the total number of items that students responded to in booklets on average. Although all 

groups used the same booklet design, the number of completed items differed slightly between 

conditions because the number of items that students did not reach differed in each condition. Table 4  

also reveals that in READ about 40% of the items were human-scored, and in SCIE about 34% of the 

items were human-scored. Note that these percentages are different from those reported in Table 1   

because assignment rates of constructed-response items in the booklets were higher than that of 

multiple-choice items. The percentages of the human-scored items (i.e., AI-scored items) are 

approximately proportional3 to the impact on the student proficiency estimation using AI scoring, 

which implies that the impacts of different scoring methodologies (i.e., AI scoring and human scoring) 

to the estimates of score distributions were about 40% and 34% in READ and SCIE, respectively.  

Table 4: Average number of human-scored items students responded 

Condition Domain 
N of human-scored 

items 

N of responded 

items 
% 

Human-A 
READ 7.6 19.4 39.6% 

SCIE 8.0 22.8 33.9% 

Human-B 
READ 7.5 19.2 39.6% 

SCIE 7.9 22.6 33.9% 

Human-C1 
READ 7.7 19.7 39.6% 

SCIE 8.1 23.0 33.9% 

Human-C2 
READ 7.6 19.5 39.6% 

SCIE 8.0 22.8 33.9% 

Human-D 
READ 7.5 19.2 39.6% 

SCIE 7.9 22.6 33.9% 

Average 
READ 7.6 19.4 39.6% 

SCIE 8.0 22.8 33.9% 

 

2.4. Statistical model and index  

In order to evaluate the psychometric properties of AI scoring, the following statistical indices were 

employed in this study.  

Index for scoring accuracy of human-scored item  

The scoring accuracy of the human-scored items, 𝜅𝑔𝑗
(𝐻)

 is defined as:  

Equation 1 

𝜅𝑔𝑗
(𝐻)

=
𝑚𝑔𝑗

(2)

𝑚𝑔𝑗
(2)

+ 𝑚𝑔𝑗
(3)

 

 
3 Strictly speaking, item information function defined with item parameters affect score estimates.   
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where 𝑚𝑔𝑗
(3)

 is the total number of triple-scored responses (i.e., inconsistent double-scored responses) 

of item 𝑗(= 1, … , 𝐽) in group 𝑔(= 1, … , 𝐺), and 𝑚𝑔𝑗
(2)

 is the number of double-scored responses (i.e., 

consistent double-scored responses). Equation 1 is a simple statistic which requires only two variables 

to compute; however, 𝜅𝑔𝑗
(𝐻)

 does not provide us with any information on how it impacts the point 

estimate of the mean 𝜇𝑔 and variance 𝜎𝑔
2 of a group. Moreover, it is an index that is dependent on score 

distribution 𝑁(𝜇𝑔, 𝜎𝑔
2), and may not reflect the reliability of scoring solely. This index also has a risk 

of overestimating accuracy since 𝑚𝑔𝑗
(2)

 contains the pattern that both human raters scored responses 

wrongly.  

Index for scoring accuracy of AI-scored items  

The scoring accuracy of AI-scored items is calculated differently from that for human-scored items 

since there are no triple-scored responses 𝑚𝑔𝑗
(3)

 in AI-scored responses. The definition of AI scoring 

accuracy is given by:  

Equation 2 

𝜅𝑔𝑗
(𝐴𝐼)

=
𝑚𝑔𝑗

∗

𝑚𝑔𝑗
 

where 𝑚𝑔𝑗
∗  is the number of matched scores between the human-scored responses and the AI-scored 

responses, while 𝑚𝑔𝑗 denotes the total number of scored responses of item 𝑗 in group 𝑔. 𝜅𝑔𝑗
(𝐴𝐼)

 treats 

human-scored responses as “true” scores, which is obviously a limitation of the index. As Equation 1 

and Equation 2 are not functions of student proficiency 𝜃, it is not possible to evaluate the scoring 

accuracy at each level of student proficiency 𝜃, which means the index does not provide us with 

information on scoring accuracy at each student proficiency level. Note that blank responses are 

excluded from calculations.  

Root Mean Squared Deviation between expected frequency on human-scored and AI-

scored responses 

In PISA, Item Response Theory (Lord and Novick, 1968[29]) is employed for scaling, which is a latent 

variable modelling from which various analyses and methodologies have been developed since the late 

1960s. In order to overcome the limitations of 𝜅𝑔𝑗
(𝐻)

 and 𝜅𝑔𝑗
(𝐴𝐼)

, model-based evaluation is also 

conducted in this study. Concretely, root mean squared deviation (RMSD) is employed for the  

model-based evaluation of item functioning of AI-scored items.  

In this study, the difference in the expected frequency conditioned on human-scored data and that of 

AI-scored data is employed to evaluate the accuracy of AI scoring. The deviation of the expected 

frequency of AI scoring from human scoring, Dev(𝑔𝑔′)𝑗(𝜃), is defined as follows: 

Equation 3 

Dev(𝑔𝑔′)𝑗(𝜃) = 𝑜𝑔𝑗𝑘(𝜃) − 𝑜𝑔′𝑗𝑘(𝜃) 

Here, 𝑔 denotes a group data scored by AI, while 𝑔′ denotes that by human. 𝑜𝑔𝑗𝑘(𝜃) is the expected 

frequency of AI scoring of category 𝑘(= 1, … , 𝐾𝑗) in item 𝑗, which is defined as:  
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Equation 4 

𝑜𝑔𝑗𝑘(𝜃) =
∑ 𝑢𝑔𝑖𝑗𝑘ℎ𝑔𝑖(𝜃|𝝋𝑔)

𝑁𝑔

𝑖=1

∑ ∑ 𝑢𝑔𝑖𝑗𝑘′ℎ𝑔𝑖(𝜃|𝝋𝑔)
𝑁𝑔

𝑖=1

𝐾𝑗−1

𝑘′=0
 
 

 𝑜𝑔′𝑗𝑘(𝜃) =
∑ 𝑢𝑔′𝑖𝑗𝑘ℎ𝑔′𝑖(𝜃|𝝋𝑔′)

𝑁𝑔

𝑖=1

∑ ∑ 𝑢𝑔′𝑖𝑗𝑘′ℎ𝑔′𝑖(𝜃|𝝋𝑔′)
𝑁𝑔

𝑖=1

𝐾𝑗−1

𝑘′=0
 
 

where 𝑢𝑔𝑖𝑗𝑘 is the binary scored data of student 𝑖 to the category 𝑘 of item 𝑗 in AI-scored group 𝑔, 

ℎ𝑔𝑖(𝜃)  is the conditional distribution of 𝜃  given by the parameters, and 𝝋𝑔 = [𝜇𝑔, 𝜎𝑔
2]  are the 

parameters of the proficiency distribution of AI-scored group 𝑔 . On the other hand, 𝑜𝑔′𝑗𝑘(𝜃)  is 

expected frequency based on 𝝋𝑔′ = [𝜇𝑔′ , 𝜎𝑔′
2 ] and 𝑢𝑔′𝑖𝑗𝑘, which is the binary scored data given by 

human raters. 

Unlike Equation 1 and Equation 2, because item response theory (IRT)-based item parameters are 

given in this study, the degree of discrepancy in Equation 3 is defined independently of the student 

proficiency, 𝜃. Since Equation 3 is a function of 𝜃 and does not provide the accuracy of AI scoring 

across all proficiency levels, an RMSD index is calculated to measure the level of the item equivalence: 

Equation 5 

RMSD(𝑔𝑔′)𝑗 =
1

𝐾𝑗
∑ √∫ (𝑜𝑔𝑗𝑘(𝜃) − 𝑜𝑔′𝑗𝑘(𝜃))

2
𝑓𝑔(𝜃)

𝜃

d𝜃

𝐾𝑗−1

𝑘=0

 

where 𝑓𝑔 is the proficiency distribution of the population. 

The RMSD (Equation 5) is used to analyse differential item functioning (DIF) in PISA and PBTS, 

where the index is defined as the weighted average of the discrepancy between the model-based 

conditional probability and the expected frequency of student responses. Furthermore, in PISA and 

PBTS, 0.12 is set as the threshold for country/economy DIF for cognitive items (OECD, n.d.[14]).  

Distribution of 𝜃 

In this study, the parameters of the distribution of 𝜃, ℎ(𝜃|𝝋𝑔), are estimated in order to investigate the 

difference between the human-scored data and the AI-scored data. In IRT, under the given item 

parameter 𝚲𝑔
∗ , the likelihood function to be maximised is defined as follows:  

Equation 6 

𝐿(𝚲𝑔
∗ , 𝝋 | 𝒖𝑔) = ∏ ∫ 𝑓(𝒖𝑔𝑖|𝜃, 𝚲𝑔

∗ )ℎ(𝜃|𝝋𝑔)
𝜃

d𝜃

𝑁

𝑖=1

 

Here, since each group has a different parameter set (i.e., national parameters and unique parameters), 

a subscript which denotes the group is attached to 𝚲∗. The marginal likelihood is maximised via the 

expectation (E) and maximisation (M) algorithm (Dempster, Laird and Rubin, 1977[30]) is employed in 

the scaling phase of PISA and PBTS (See Baker and Kim (2004[31]) for details).  
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2.5. Pre-trained cross-lingual model and AI scoring  

The last few years have seen significant advancements in the field of natural language processing 

(NLP). The two most important advancements being the development of Transformers (a new model 

that uses ‘attention mechanisms’ to track the relations between words across long text sequences in 

forward and reverse directions) and Transfer Learning (the use of large pre-trained models, which are 

then adjusted to perform a specific task). 

In this study, the base XLM-R model is used for AI scoring. XLM-R is an NLP model that has been 

pre-trained with 2.5TB of filtered CommonCrawl data in 100 languages. The training data sets 

described in Table 3 are used to further train the base XLM-R model to predict scores. Each subset has 

different characteristics, the number of responses to be used for training and the languages of responses 

within the data set. The pre-trained cross-lingual XLM-R model captures generic language 

characteristics that ideally support the requirements for training scoring tasks in ILSA. 

3. Psychometric property of AI coding 

3.1. Accuracy of human scoring and AI scoring 

Calculated averages of 𝜅𝑔𝑗
(𝐻)

 and 𝜅𝑔𝑗
(𝐴𝐼)

 over the items of READ and SCIE are shown in Table 5. The 

average scoring accuracies of human-scored items across the groups range from 85% to 97% in READ 

and from 80% to 94% in SCIE., The average scoring accuracies for AI-scored items were almost 

equivalently spread from 84% to 94% in READ and from 80% to 94% in SCIE. In language-C, the 

scoring accuracy of the group-C2 (cycle-2) data was better than that of group-C1 (cycle-1) data, which 

is because the same scoring team performed the scoring tasks, and therefore, their scoring quality was 

improved.  

Table 5 indicates that the accuracy of the AI scoring reaches that of the human scoring in the largest 

training data conditions in group-B and group-C1. Furthermore, the AI scoring accuracy overcame the 

human scoring accuracy in group-A, when the training data for each item included 800 resposnes. 

However, the AI scoring accuracy was always lower than the human scoring accuracy when the 

training data for each item included 300 responses. For groups C1 and C2, the AI scoring was more 

accurate when the group C2 data was used for AI training, compared to when the C1 data was used for 

AI training. This demonstrates the importance of the quality of AI training data for AI scoring accuracy.  

For multilingual conditions, the number of AI training responses used for each language was 360 or 

600. Nonetheless, in the multilingual conditions, the scoring accuracy improved. This indicates that, at 

least in this scenario, multilingual data trained for deep learning contribute productively to prediction 

models without the need to translate student responses into a single language. 
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Table 5: Scoring accuracies of human scoring and AI scoring 

Condition Training data 
READ 

(Human) 

READ 

(AI) 

SCIE 

(Human) 

SCIE 

(AI) 

AI300-A 

Group-A 85.4% 

83.5% 

80.7% 

79.5% 

AI600-A 88.3% 84.9% 

AI800-A 89.3% 85.7% 

AI300-B 

Group-B 89.6% 

86.5% 

91.9% 

87.2% 

AI600-B 89.0% 89.6% 

AI1000-B 89.2% 92.3% 

AI1000C1-C1 
Group-C1 91.3% 

87.1% 
90.1% 

91.2% 

AI1000C2-C1 91.3% 89.1% 

AI1000C1-C2 
Group-C2 95.4% 

87.7% 
93.7% 

90.7% 

AI1000C2-C2 94.0% 93.8% 

AI360-D Group-D 93.0% 90.7% 90.1% 88.1% 

AImix-A Group-A 85.4% 89.0% 80.7% 86.4% 

AImix-B Group-B 89.6% 89.2% 91.9% 92.3% 

AImix-C1 Group-C1 91.3% 89.6% 90.1% 88.1% 

AImix-D Group-D 93.0% 91.0% 90.1% 90.0% 

 

3.2. Item functioning of AI-scored data 

This section compares the item functioning between human-scored items and the AI-scored items. 

Hence, Dev(𝑔𝑔′)𝑗(𝜃) (Equation 3) was calculated for each item between the human-scored data and 

AI-scored data. Figure 1 shows Dev(𝑔𝑔′)𝑗(𝜃) of the READ and SCIE conditions in group-A. Namely, 

the figures compare condition Human-A to conditions AI300-A, AI600-A, and AI800-A. Figure 2 

reports the conditions in group-B. That is, the figures compare condition Human-B to conditions 

AI300-B, AI600-B, and AI1000-B.  Figure 3 and Figure 4 present conditions in groups C1 and C2, 

which were based on the experimental design. Figure 5 compares human scoring with condition AI360-

D. And, finally, Figure 6 to Figure 9 report the Dev(𝑔𝑔′)𝑗(𝜃) of the READ and SCIE conditions in the 

multilingual conditions.  

Each line in the figures depicts the Dev(𝑔𝑔′)𝑗(𝜃) of an item, and the grey dashed lines denote the 

threshold of the RMSD index, which is set at 0.12 in accordance with PISA and PBTS. Since the 

RMSD is a weighted average deviation across 𝜃 (Equation 5), instances where lines partially cross the 

threshold line do not necessarily indicate DIF. Also note that the horizontal bar shown at the bottom 

of each figure represents the mean density function with regard to 𝜃 of the two groups (𝑔 and 𝑔′). 

Therefore, areas outside the black or grey bands might have insufficient student responses, and 

insufficient Fisher information to gain accurate insights about item functioning and AI scoring 

accuracy. As such, readers should focus their attention on the range of results within the black and grey 

bands, where approximately 95% of student responses lie.  

In a Dev(𝑔𝑔′)𝑗(𝜃) calculation, the expected frequency of human-scored items, 𝑜𝑔′𝑗𝑘(𝜃), is placed to 

the right of that of AI-coded items (Equation 3). Hence, the deviation, Dev(𝑔𝑔′)𝑗(𝜃), takes a positive 

value (> 0) if human scoring is more severe than AI scoring, and takes a negative value (< 0) if the 

AI scoring is more lenient than the human scoring. Dev(𝑔𝑔′)𝑗(𝜃) is slightly biased towards the positive 

side across the conditions, which implies the AI scoring is slightly more lenient than the human scoring.  
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Figure 1: Deviations of item functioning between Human-A and (AI300-A, AI600-A, AI800-A) 

 

Figure 2: Deviations of item functioning between Human-B and (AI300-B, AI600-B, AI1000-B) 
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Figure 3: Deviations of item functioning between Human-C1 and (AI1000C1-C1, AI1000C2-C1) 

 

Figure 4: Deviations of item functioning between Human-C2 and (AI1000C1-C2, AI1000C2-C2) 

 

Figure 5: Deviations of item functioning between Human-D and AI360-D 

 

Figure 6: Deviations of item functioning between Human-A and AImix-A 
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Figure 7: Deviations of item functioning between Human-B and AImix-B 

 

Figure 8: Deviations of item functioning between Human-C1 and AImix-C1 

 

Figure 9: Deviations of item functioning between Human-D and AImix-D 

 

Figure 1 to Figure 9 indicate that the more student responses are used in AI training, the more the 

deviation lines conform to RMSD = 0.0. For the three different numbers of AI training response in 

Figure 1 and Figure 2, item functioning is not stable when the number of training responses is only 300 

per item. In READ, the items represented in orange showed |Dev(𝑔𝑔′)𝑗(𝜃)| > 0.12 for a wide range 

of proficiency (Figure 1 and Figure 2), regardless of the number of AI training responses. In SCIE, the 

item represented in orange showed different items functioning in many conditions. These items had 

DIF (i.e., scoring-mode DIF), in which case we can conclude that the AI scoring functioned differently 

from the human scoring. Here the group proficiency distribution ℎ(𝜃|𝝋𝑔) will be biased by the items 

if the items that show different functioning do not get appropriate treatments.  

Deviation of the expected frequency Dev(𝑔𝑔′)𝑗(𝜃) in groups C1 (Figure 3) and C2 (Figure 4) showed 

different AI scoring behaviours in both READ and SCIE. The conditions using group-C2 data were 

more stable than conditions using the group-C1 data. Thus, comparisons of figures in Figure 4 and 

Figure 5 indicate that the quality of AI training data is essential to obtain an accurate AI scoring model. 

Figure 5 and Figure 9 indicate that the human scoring in group-D was more lenient than the AI scoring. 

The figures show that the human scoring was more lenient especially among high-performance 

students. In this study, only 360 student responses were used for the training; thus, further investigation 

on group-D is required to understand this result.  

The item characteristics given by AI-scored data did not fit that of human-scored data in two READ 

items and one SCIE item. However, most items scored by AI had the same item functioning as those 

scored by human raters in both READ and SCIE domains. The number of items that showed 

discrepancies was limited regardless of the language. In this study, all items were retained for scaling 

in order to assess the impact of the precision of the AI scoring. 
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3.3. Impact on score distribution 

In ILSAs, constructed-response items are scored by multiple human raters to ensure the reliability of 

scoring. Human raters use rubrics to score student responses to items. However, in educational 

assessment, restrictions in scoring schedules and financial costs often mean that not all student 

responses to constructed-response items are scored by multiple raters. In most cases, the aim of 

conducting an ILSA is understanding the broader population, not the proficiency of individual students. 

Therefore, the parameter of the interest is the proficiency distribution of the population, 𝝋𝑔 = [𝜇𝑔, σ𝑔
2], 

not the proficiencies of any single student 𝜃𝑖. Therefore, the main purpose of investigating human 

scoring quality is to check the bias of human raters on the population proficiency.  

In this section, the distribution of 𝜃 of a group, ℎ(𝜃|𝝋𝑔), is estimated for each condition. Table 6 

shows the estimates of the mean proficiency distribution of READ and SCIE. The estimates in 

parentheses represent the standard deviation of the distribution. Moreover, Figure 10 to Figure 18 show 

the distributions of 𝜃, which compare scores based on human-scored data and AI-scored data. Note 

also that all items are included in the estimations, even though some items showed scoring-mode DIF.  

Table 6:  Estimated score distributions of READ and SCIE 

Condition 
READ 

(Human) 

READ 

(AI) 

Difference 

(AI-Human) 

SCIE 

(Human) 

SCIE 

(AI) 

Difference 

(AI-Human) 

AI300-A 

530.7(113.6) 

543.2(111.5) +12.5(−2.1) 

520.3(105.2) 

533.7(115.5) +13.4(+10.3) 

AI600-A 534.0(113.3) +3.0(−0.3) 528.0(108.7) +7.7(+3.5) 

AI800-A 531.1(112.9) −0.4(−0.7) 526.8(108.7) +6.5(+3.5) 

AI300-B 

435.2(105.2) 

440.8(108.2) +5.6(+3.0) 

416.9(97.5) 

424.9(96.6) +8.0(−0.9) 

AI600-B 441.5(106.6) +6.3(+1.4) 422.8(97.8) +5.9(+0.3) 

AI1000-B 434.9(102.5) −0.3(−2.7) 422.3(98.0) +5.4(+0.5) 

AI1000C1-C1 
489.7(94.3) 

487.6(92.0) −2.1(−2.3) 
470.3(83.5) 

479.4(84.8) +9.1(+1.3) 

AI1000C2-C1 490.7(90.3) +1.0(−4.0) 475.6(85.8) +5.3(+2.3) 

AI1000C1-C2 
482.8(92.5) 

481.5(90.1) −1.3(−2.4) 
467.5(82.1) 

476.8(82.0) +9.3(−0.1) 

AI1000C2-C2 484.6(90.8) +1.8(−1.7) 472.3(83.1) +4.8(+1.0) 

AI300-D 470.3(104.7) 456.3(93.0) −14.0(−11.7) 480.3(104.9) 470.9(101.6) −9.4(−3.3) 

AImix-A 530.7(113.6) 524.5(114.9) −6.2(+1.3) 520.3(105.2) 522.4(109.4) +2.1(+4.2) 

AImix-B 435.2(105.2) 435.4(103.8) +0.2(−1.4) 416.9(97.5) 421.1(98.2) +4.2(+0.7) 

AImix-C1 489.7(94.3) 489.2(94.6) −0.5(+0.3) 470.3(83.5) 475.4(85.2) +5.1(+1.7) 

AImix-D 470.3(104.7) 452.5(92.6) −17.8(−12.1) 480.3(104.9) 471.0(97.4) −9.3(−7.5) 

 

In most cases, the distributions of 𝜃 based on the AI-scored data almost overlapped the distributions 

of 𝜃 based on the human-scored data, with the exception of conditions that only included 300 AI 

training responses. In most of these conditions, the AI scores overestimated student proficiencies in 

both READ and SCIE. However, this tendency was stronger in SCIE than READ. In other conditions 

(i.e., AI training data > 300), the AI scores in SCIE were overestimated, even though the number of 

training responses was as high as 1 000, which was equivalent to the results of the item functioning 

analysis reported in section 3.2. In READ, the variances of the score distributions estimated based on 

the AI-scored data were close to the expected score distributions, regardless of the conditions. 

Nonetheless, in SCIE, the variances were slightly overestimated in the AI scorings. Considering that 

standard errors of the mean in PISA 2018 ranged from about 1.0 to 3.0 in most countries/economies, 

the gap reported in the present study between human and AI scoring can be considered almost 

equivalent in READ when the number of training responses is large enough, but it was slightly 

overestimated in SCIE.  
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Figure 10: Score distributions of Human-A, AI300-A, AI600-A, and AI800-A 

 

Figure 11: Score distributions of Human-B, AI300-B, AI600-B, and AI1000-B 

 

Figure 12: Score distributions of Human-C1, AI1000C1-C1, and AI1000C2-C1 

 

Figure 13: Score distributions of Human-C2, AI1000C1-C2 and AI1000C2-C2 
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Figure 14: Score distributions of Human-D and AI360-D 

 

Figure 15: Score distributions of Human-A and AImix-A 

 

Figure 16: Score distributions of Human-B and AImix-B 

 

Figure 17: Score distributions of Human-C1 and AImix-C1 
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Figure 18: Score distributions of Human-D and AImix-D 

 

4. Scaling student proficiency with probabilistic score data 

4.1. Modelling the certainty of predictions in score estimation  

Predicted AI scores have some degree of certainty. In this study, the term “degree of certainty” refers 

to a probabilistic score, ranging from 0 to 1. This section describes the scaling model based on 

probabilistic score data and its psychometric properties. Definitions of certainty can vary, from the 

probability of membership to a category, to the average predicted score based on multiple patterns of 

algorithmic and/or parameter settings. The latter mitigates the critics of the arbitrariness of choices of 

prediction algorithms and parameter settings of the prediction models. In this study, the probability of 

membership to a category is employed in a probabilistic score (PS) model.  

Here, let 𝑥𝑖𝑗  be the score x of student 𝑖(= 1, … , 𝑁𝑔) to item 𝑗. In some response formats, such as 

multiple-choice, 𝑥𝑖𝑗  can be perfectly reproduced, but this is not possible in constructed responses. 

Therefore, even though the prediction of 𝑥𝑖𝑗 is treated as equivalent across response formats, the nature 

of what is predicted is not necessarily the same.  

In an IRT model, the likelihood function with respect to 𝜃 conditioned on the item parameters 𝚲𝑔 is,  

Equation 7 

𝑓(𝒖𝑔𝑖|𝜃, 𝚲𝑔) = ∏ ∏ ∏ 𝑝𝑔𝑗𝑘(𝜃)𝑢𝑖𝑗𝑘

𝐾𝑗−1

𝑘=0

𝐽

𝑗=1

𝑁𝑔

𝑖=1

 

where 𝑝𝑔𝑗𝑘(𝜃) is the item characteristic response function for category 𝑘 of item 𝑗 in country/economy 

𝑔, and 𝑢𝑖𝑗𝑘 is the binary indicator of student 𝑖 to category 𝑘 of item 𝑗, such that,  

𝑢𝑖𝑗𝑘 = {
1, if  𝑥𝑖𝑗 = 𝑘

0, otherwise
 

The likelihood function is the main piece of information, and in most cases, the only piece of 

information used for estimating student proficiency. Binary data 𝑢𝑖𝑗𝑘 can be replaced with 𝑤𝑖𝑗𝑘, which 

represents the membership probability of student 𝑖 to category 𝑘 of item 𝑗. This implies that the level 

of certainty of AI scoring can be taken into account in the log-likelihood function in the form of the 

weight of the predicted score; namely, 
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Equation 8 

log 𝑓(𝒖𝑔𝑖|𝜃, 𝜦𝑔) = ∑ ∑ ∑ 𝑤𝑖𝑗𝑘  𝑝𝑔𝑗𝑘(𝜃)

𝐾𝑗−1

𝑘=0

𝐽

𝑗=1

𝑁𝑔

𝑖=1

 

The parameter of the distribution of 𝜃 , 𝝋𝑔 , can be estimated based on Equation 8 through the 

expectation-maximisation (EM) algorithm (Dempster, Laird and Rubin, 1977[30]). Further,𝒘𝑖𝑘 =

[𝑤𝑖1𝑘, 𝑤𝑖2𝑘 , … , 𝑤𝑖𝐽𝑘] can take two different patterns; one is a certainty of the prediction for only the 

category that the AI predicted. For example, when 𝐾𝑗 = 2,  

Equation 9 

𝒘𝑖𝑘 = [
0 0.836 ⋯ 0.934

0.901 0 ⋯ 0
] 

which mitigates the impact of prediction on the log-likelihood function. Another option is to compute 

the membership probability for each category, such as,  

Equation 10 

𝒘𝑖𝑘 = [
0.089 0.836 ⋯ 0.934
0.901 0.164 ⋯ 0.066

] 

Note that in this model  ∑ 𝑤𝑖𝑗𝑘
𝐾𝑗−1

𝑘=0 = 1 holds. Also note that in this study the latter model is employed; 

however, in future applications the psychometric benefits and limitations of both models should be 

investigated. 

4.2. Distribution of certainty of predictions 

This section reports the distributions of the probabilistic scores given by the AI models. Only the results 

for language-A and language-B are presented, in which the proficiency distributions of these groups 

were about 50 points lower/higher than the OECD average; thus, wide distributions of 𝑤𝑖𝑗𝑘 for these 

particular groups were expected. The histograms of 𝒘𝑖𝑘 for READ are depicted on the left, and those 

for SCIE are depicted on the right (Figure 19 and Figure 20). Each histogram reports 𝑤𝑖𝑗𝑘  

(Equation 10) for all 𝑖 and 𝑗, coloured by 𝑘, depending on a training data condition.  

Since group-A (language-A) received a high proportion of correct response patterns compared to 

incorrect response patterns, in Figure 19, the probabilistic score patterns for correct responses overlay 

the majority of response patterns for incorrect responses, particularly in READ. On the other hand, in 

Figure 20, where group-B (language-B) is reported, the opposite is true, and the probabilistic score 

patterns for incorrect responses overlay the majority of correct responses. As can be seen in both sets 

of histograms, when a greater number of human-scored student responses are used in AI training, 𝑤𝑖𝑗𝑘 

converges towards 1.0. Also note that in histograms reporting results based on the largest AI-trained 

datasets (i.e., 𝑁 = 1000) 𝑤𝑖𝑗𝑘 converges closely towards 1.0. This implies that the size of AI training 

datasets affects the level of uncertainty in AI scoring. Although the levels of certainty concentration 

can vary from group to group and/or model to model, 𝑤𝑖𝑗𝑘 tends to converge towards 1.0 if the number 

of AI training responses exceeds 600. Further analysis in section 4 is performed with this data.  
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Figure 19: Distributions of certainty of prediction in language-A 

 

Figure 20: Distributions of certainty of prediction in language-B 
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4.3. Item functioning by probabilistic score model 

Figure 21 and Figure 22 show Dev
(𝑔𝑔′)𝑗

(𝜃) estimated using the probabilistic score (PS) model 

(Equation 8) of the conditions in language-A and language-B. Figure 21 compares human-scored data 

to AI-scored data for langauge-A, and Figure 22 compares these results for language-B. The results for 

READ are depicted on the left, and for SCIE on the right. In all graphs, each line (i.e., Dev
(𝑔𝑔′)𝑗

(𝜃)) 

represents an item. Lines that exceed a deviation of zero indicate that the AI predicted scores that were 

higher than the human scores and vice versa. 

In Figure 21 and Figure 22, some Dev(𝑔𝑔′)𝑗(𝜃) results are positively skewed in lower score ranges. 

Namely, AI scoring with the PS model tended to estimate lower-ability students higher than the  

human-based IRT model estimated these students. This model characteristic is especially evident in 

the figures for several items in SCIE. However, this skewness was relatively smaller for datasets based 

on large training datasets. Furthermore, when the AI training datasets were ≥ 600 responses, this 

skewness was limited within the population proficiency ranges, which are depicted by the black and 

grey bands on the 𝑥-axes). It is also important to note that conditional expectations of correct responses 

may be higher in the AI-based PS model because this model awards partial credit for responses that 

are incorrect. 

Furthermore, in some items, Dev(𝑔𝑔′)𝑗(𝜃) results in the high score range are negatively skewed. This 

implies that, in some items at least, the PS model was stricter than human raters for high-performing 

students who likely answered these items correctly. However, the degree of these AI deviations was 

generally limited to |Dev(𝑔𝑔′)𝑗(𝜃)| < 0.12 , particularly in datasets trained with ≥ 600  student 

responses. Additionally, items  with relatively variable certainty tended to show lenient marking in the 

low-performance range, and strict marking in the high-performance range.  

Figure 21: Deviations of item functioning Human-A and AI300-PrA, AI600-PrA, and AI800-PrA 
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Figure 22: Deviations of item functioning Human-B and AI300-PrB, AI600-PrB, and AI1000-PrB 

 

 

4.4. Score distributions estimated using the probabilistic score model  

The estimated score distributions in language-A and language-B data are reported in Figure 23 and 

Figure 24, respectively. Descriptive statistics of the estimated distributions are also presented in  

Table 7. Comparing the score distributions estimated based on the PS model to that of AI-scored data 

using the original model, variance is smaller across the domains and the conditions. In READ, the 

average scores of the PS model converge to that of human-scored data if the number of training 

responses reaches 800, while SCIE average scores of the PS model are estimated to be slightly higher 

than the original model even if the number of training responses reaches 1 000.  

Comparing the estimated score distributions of the PS model to the results based on the AI-scored data 

and a general IRT model shown in Table 6,  the estimates of the average score in the small training 

data condition are improved in both domains; however, the estimated distributions using a PS model 

and a general IRT model are almost identical when the number of training responses is large. It is 

aligned with the data behaviour shown in Figure 19 and Figure 20, in which distributions of 

probabilistic scores are concentrated on 1.0; thus, it is almost equivalent to the predicted binary score 

(or polytomous score in some items).  
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Figure 23: Score distributions of Human-A, AI300-PrA, AI600-PrA, and AI1000-PrA 

 

Figure 24: Score distributions of Human-B, AI300-PrB, AI600-PrB, and AI1000-PrB 

 

 

Table 7: Estimated score distributions of READ and SCIE using probabilistic score (PS) model 

Condition 
READ 

(Human) 

READ 

(AI) 

Difference 

(AI-Human) 

SCIE 

(Human) 

SCIE 

(AI) 

Difference 

(AI-Human) 

AI300-PrA 

530.7(113.6) 

537.7(102.1) +7.0(−11.5) 

520.3(105.2) 

531.0(106.1) +10.7(+0.9) 

AI600-PrA 533.6(109.4) +2.9(−4.2) 527.4(104.9) +7.1(−0.3) 

AI800-PrA 530.2(111.1) −0.5(−2.5) 525.7(105.1) +5.4(−0.1) 

AI300-PrB 

435.2(105.2) 

446.1(95.4) +10.9(−10.2) 

416.9(97.5) 

425.1(93.8) +8.2(−3.6) 

AI600-PrB 441.8(103.1) +6.6(+1.4) 423.6(95.4) +6.7(−2.1) 

AI1000-PrB 436.1(100.6) +0.9(−4.6) 422.8(97.1) +5.9(−0.4) 

5. Discussions 

5.1. Can AI scoring be used in practice? 

This study evaluated the accuracy of AI scoring using XLM-R deep learning technology. In the READ 

domain, when 600-800 responses from a language group were used in the AI training phase, the 

estimated score distribution by the AI-scored data was converged with the human-based IRT model 

distribution, even though a small number of items showed minor differential item functioning (DIF) 

by scoring modes (i.e., human scoring and AI scoring). This reveals that if the AI training dataset is 

large enough (i.e., exceeds 1 000 responses per item) and these responses include a wide range of 

response patterns, AI scoring performs similarly to human scoring, according to the measure of DIF 

used in this study (see Equation 3). In practice, AI scorings can be an option for constructed-response 

items in educational assessments, as long as the items do not show scoring-mode DIF. This delimitation 

prevents any unwanted bias in proficiency distributions. 
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In SCIE, the AI tended to overestimate scores for some items across conditions, although the size of 

these overestimates was small. This overestimation may have been caused by the nature of the 19 

constructed-response SCIE items, the nature of the AI model employed in this study, or both. 

Alternatively, it may have been caused by the inconsistent human marking practices used to train the 

models. Further investigation is needed to clarify this point. Nevertheless, most of the SCIE items 

marked by AI functioned equivalently to human scoring, especially when the training datasets were 

relatively large (i.e., 𝑁 = 1000 ). It is possible to mitigate this kind of bias by excluding any 

problematic items from AI scoring. Overall, this study has demonstrated that AI scoring can be used 

in practice as long as the careful psychometric analysis is performed for each item prior to model 

implementation. Consequently, this study provides strong evidence that accurate AI models can be 

successfully implemented for constructed-response items in large-scale assessments. The method 

described in this study is practical and provides accurate feedback on model function at the item level 

and across all proficiencies. 

The index defined in Equation 3 should be used in the psychometric evaluation of the equivalence of 

AI and human scoring. The descriptive indices 𝜅𝑔𝑗
(𝐻)

(Equation 1) and  𝜅𝑔𝑗
(𝐴𝐼)

(Equation 2) do not provide 

sufficient information to judge the equivalence of AI and human scoring. It is important to note here 

that a specific scoring-mode DIF threshold was not discussed in detail in this study, even though a 

threshold of 0.12 was used as a general reference, in accordance with the threshold used for human 

judgements in cognitive items in PISA across countries/economies (OECD, 2017[32]).  

This study also demonstrated that language did not seem to be a factor that impacted the accuracy of 

AI models. As shown in Table 6, regardless of the training data language, the accuracies of the AI 

models in both READ and SCIE were closely comparable to that of human raters when the AI models 

were trained using 800-1 000 human-scored responses.  

In the most conservative application of this scoring technology, AI scoring could be applied for quality 

control purposes, whereby human-scored responses are compared with AI-predicted scores, and where 

human remarking is recommended where discrepancies arise. This procedure can also be used to verify 

the stability of scoring standards between testing cycles, which is important given that one of the main 

interests in ILSAs is long-term trends. Indeed, any change in scoring standards introduces unexpected 

score biases and should be avoided.  

It is obvious that cross-lingual language models will be continuously improved. Although XLM-R, 

which contains 550 million parameters, is used in this study, new cross-lingual pre-trained models are 

already published after the release of XLM-R. For example, Switch Transformer (Fedus, Zoph and 

Shazeer, 2021[33]) uses 1.6 trillion parameters and has shown better performances than the model that 

had been developed so far in various tasks frequently used in the NLP domain. It is natural to think 

that together with the improvements in the computation environment, cross-lingual language models 

will leap in future. From a test-management point of view, it is important to set a sustainable  

model-updating procedure for pre-trained language models, especially in ILSAs, so that scores scored 

by different models are comparable among testing cycles. Together with continuous refinement 

procedures for training data, model implementation and replacement rules should be designed before 

applying AI scoring for educational assessments.  

5.2. Does multilingual data improve scoring accuracy? 

Training the AI models using response data in multiple languages improved the accuracy of AI scoring. 

The utility of multilingual data was reported in section 3. Table 6 shows that even when the training 

data was limited to 360-600 responses per language, the AI scoring accuracy was reached at the  

human-scoring level. As such, the use of multilingual training data may enhance the applicability of 

AI scoring in ILSAs, in as much as small population countries/economies can also benefit from  

AI-based scoring.  
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Multilingual data also provide the opportunity to assess human scoring practices between 

countries/economies. At present, in the PISA-based Test for Schools, human scoring of  

constructed-response items is assessed through random spot-checks in each country/economy. In 

addition, constructed-response item functioning is assessed in the scaling phase; however, this analysis 

cannot pinpoint problematic scoring practices within specific countries/economies. A multilingual 

approach to AI model training would allow for the assessment of human scoring practices from an 

entirely different perspective. Specifically, it would allow for the comparison of human scoring in 

specific countries/economies with a baseline of AI predictions based on models built using datasets 

from all participating countries/economies. Discrepancies would indicate the need for the careful  

cross-checking of human scoring. Thus, in short, an important finding of this study is that multilingual 

data can be used in AI model training to support the international comparability and targeted 

intervention of human marking practices.  

In ILSAs, the growing number of participating countries/economies has, at times, been considered a 

negative factor for the reliability and validity of assessments, despite empirical evidence to the contrary 

(Okubo, 2022[34]). The present study has demonstrated that an increase in the number of participating 

countries/economies will, instead, probably improve insights into human scoring practices within 

countries/economies via AI models trained using multilingual constructed-response data. 

5.3. Should certainty of prediction be considered when estimating scores?  

The more training data is used for AI, the more the certainty concentrates on 1.0, and therefore the 

impact of the probabilistic score dilutes the impact if there is sufficient training data. The comparison 

between Table 6 and Table 7 indicates no significant difference between the two models in terms of 

the point estimates of the mean, although the PS model for the small training data improved the 

accuracy of the estimation in READ of group-A. On the other hand, there is a clear difference in the 

estimated variance of the proficiency distributions, where the PS model estimates them smaller than 

the original IRT model. This is due to the change of shape of the log-likelihood function of each student, 

where the mode of the log-likelihood is biased towards the centre. Further psychometric properties of 

the PS model should be investigated with different datasets.  

Although the PS model didn’t show significant improvement compared to the original IRT model, it 

still can be considered a valuable model since it gives us an opportunity to mitigate critics of model 

choices of deep learning models and pre-trained datasets. The arbitrary choice of models and datasets 

can be avoided by taking an average of the predictions given by the different AI models and the  

pre-trained datasets, which is important from a validity perspective.  

5.4. Future research and development 

In this study, cognitive items of the PISA-based Test for Schools (PBTS) were analysed. The apparent 

next step in this research is to investigate the feasibility of AI scoring for other international large-scale 

assessments, such as PISA. Given that the current study demonstrated the utility of multilingual data 

for AI-based predictions in the PBTS, we expect higher accuracy in PISA, which includes even more 

countries/economies. Furthermore, if historical student responses to PISA trend items are sufficient, 

high accuracy is expected from the AI models. It is important to note, however, that this study also 

found that some items cannot be accurately predicted by AI. Therefore, in future practice, it will be 

essential to identify these kinds of items and ensure that they continue to be scored by humans. It may 

also be beneficial to investigate the substantive reasons why these items cannot currently be predicted 

by AI.  

Defining procedures for AI scoring is indispensable work if we are to maximise the efficiency in 

scoring constructed-response items. These AI models should be continuously updated with additional 

training data that is robust from a psychometric perspective. To achieve this, the workflow of human 
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scoring practices should be analysed and discussed, and a system that supports greater consistency in 

human scoring should be carefully designed. Human scoring protocols that foster consistent scoring 

across all markers, such as the two-stage pairwise model (Humphry and Heldsinger, 2020[35]), may 

significantly improve the quality and AI training data and, in turn, the predictive accuracy of AI models. 

Obviously, AI scoring can be implemented using multi-stage testing (MST) in order to increase the 

efficiency of score estimation at each stage of calibration and the validity of item assignments. 

Branching students based on selected-response items may include unexpected errors because of 

unparameterised item characteristics such as differences in response-format functioning between 

subgroups, such as gender. In addition to this, using constructed-response items for provisional score 

estimations will provide us with more options for booklet design.  

Finally, in ILSAs, both cognitive items and student responses regarding occupation are coded by 

human markers. For example, in PISA and PBTS, student responses to parent occupation questions are 

coded in accordance with the international standard classification of occupations (International Labour 

Office, 2012[36]), as defined by the International Labour Organisation (ILO). The coding accuracy here 

does not contribute to the point estimate of country/economy mean and variance of proficiency 

distributions; nonetheless, many human resources and financial costs are expended for this task alone 

in each country/economy since it affects student’s ESCS index (PISA measure of economic, social and 

cultural status), which is widely used in various studies. As such, this international standard 

classification of occupations (ISCO) coding task is the next target that we plan to work on. Automating 

ISCO coding (Gweon et al., 2017[37]) will reduce financial costs in the future. 
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