[27] Allen, M. et al. (2016), “Origin of the U87MG glioma cell line: Good news and bad news”, Science Translational Medicine, Vol. 8/354, pp. 354re3-354re3, http://dx.doi.org/10.1126/scitranslmed.aaf6853.
[33] Almeida, J., K. Cole and A. Plant (2016), “Standards for Cell Line Authentication and Beyond”, PLOS Biology, Vol. 14/6, p. e1002476, http://dx.doi.org/10.1371/journal.pbio.1002476.
[38] Almeida, J., C. Hill and K. Cole (2013), “Mouse cell line authentication”, Cytotechnology, Vol. 66/1, pp. 133-147, http://dx.doi.org/10.1007/s10616-013-9545-7.
[39] Almeida, J., C. Hill and K. Cole (2011), “Authentication of African green monkey cell lines using human short tandem repeat markers”, BMC Biotechnology, Vol. 11/1, p. 102, http://dx.doi.org/10.1186/1472-6750-11-102.
[7] Anderson, R. et al. (1998), “The Availability of Human Tissue for Biomedical Research: The Report and Recommendations of the ECVAM Workshop 32.”, Alternatives to laboratory animals, pp. 763-777.
[11] ATTC (2014), Animal Cell Culture Guide, ATTC.
[24] Baust, J., R. Van Buskirk and J. Baust (2002), “Gene Activation of the Apoptotic Caspase Cascade Following Cryogenic Storage”, Cell Preservation Technology, Vol. 1/1, pp. 63-80, http://dx.doi.org/10.1089/15383440260073301.
[9] Bielecka, A. and A. Mohammadi (2014), “State-of-the-Art in Biosafety and Biosecurity in European Countries”, Archivum Immunologiae et Therapiae Experimentalis, Vol. 62/3, pp. 169-178, http://dx.doi.org/10.1007/s00005-014-0290-1.
[43] Blázquez-Prunera, A. et al. (2017), “Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction”, Stem Cell Research & Therapy, Vol. 8/1, http://dx.doi.org/10.1186/s13287-017-0552-z.
[14] Cadena-Herrera, D. et al. (2015), “Validation of three viable-cell counting methods: Manual, semi-automated, and automated”, Biotechnology Reports, Vol. 7, pp. 9-16, http://dx.doi.org/10.1016/j.btre.2015.04.004.
[18] Chai, C. and K. Leong (2007), “Biomaterials Approach to Expand and Direct Differentiation of Stem Cells”, Molecular Therapy, Vol. 15/3, pp. 467-480, http://dx.doi.org/10.1038/sj.mt.6300084.
[52] Chan, Y. et al. (2013), “Electrical Stimulation Promotes Maturation of Cardiomyocytes Derived from Human Embryonic Stem Cells”, Journal of Cardiovascular Translational Research, Vol. 6/6, pp. 989-999, http://dx.doi.org/10.1007/s12265-013-9510-z.
[5] Coecke, S. et al. (2005), “Guidance on good cell culture practice: A Report of the Second ECVAM Task Force on good cell culture practice”, ATLA Alternatives to Laboratory Animals, Vol. 33/3, pp. 261-287.
[60] Coecke, S. et al. (2006), “Metabolism: a bottleneck in in vitro toxicological test development. The report and recommendations of ECVAM workshop 54.”, Alternatives to laboratory animals.
[44] Daily, K. et al. (2017), “Molecular, phenotypic, and sample-associated data to describe pluripotent stem cell lines and derivatives”, Scientific Data, Vol. 4, p. 170030, http://dx.doi.org/10.1038/sdata.2017.30.
[37] Didion, J. et al. (2014), “SNP array profiling of mouse cell lines identifies their strains of origin and reveals cross-contamination and widespread aneuploidy”, BMC Genomics, Vol. 15/1, p. 847, http://dx.doi.org/10.1186/1471-2164-15-847.
[23] ECACC (2010), Fundamentals Techniques in Cell Culture, European Collection of Authenticated Cell Cultures, United Kingdom.
[47] EMA (2013), VICH GL34: Biologicals: testing for the detection of Mycoplasma contamination, European Medicines Agency.
[10] EU (2009), Directive 2009/41/EC of the European Parliament and of the Council.
[28] Frattini, A. et al. (2015), “High variability of genomic instability and gene expression profiling in different HeLa clones”, Scientific Reports, Vol. 5/1, http://dx.doi.org/10.1038/srep15377.
[64] Funk, C. and A. Roth (2016), “Current limitations and future opportunities for prediction of DILI from in vitro”, Archives of Toxicology, Vol. 91/1, pp. 131-142, http://dx.doi.org/10.1007/s00204-016-1874-9.
[29] Fusenig, N. et al. (2017), “The need for a worldwide consensus for cell line authentication: Experience implementing a mandatory requirement at the International Journal of Cancer”, PLOS Biology, Vol. 15/4, p. e2001438, http://dx.doi.org/10.1371/journal.pbio.2001438.
[53] Garzoni, L. et al. (2009), “Dissecting coronary angiogenesis: 3D co-culture of cardiomyocytes with endothelial or mesenchymal cells”, Experimental Cell Research, Vol. 315/19, pp. 3406-3418, http://dx.doi.org/10.1016/j.yexcr.2009.09.016.
[25] Geraghty, R. et al. (2014), “Guidelines for the use of cell lines in biomedical research”, British Journal of Cancer, Vol. 111/6, pp. 1021-1046, http://dx.doi.org/10.1038/bjc.2014.166.
[59] Goers, L., P. Freemont and K. Polizzi (2014), “Co-culture systems and technologies: taking synthetic biology to the next level”, Journal of The Royal Society Interface, Vol. 11/96, pp. 20140065-20140065, http://dx.doi.org/10.1098/rsif.2014.0065.
[15] Gunetti, M. et al. (2012), “Validation of analytical methods in GMP: the disposable Fast Read 102® device, an alternative practical approach for cell counting”, Journal of Translational Medicine, Vol. 10/1, p. 112, http://dx.doi.org/10.1186/1479-5876-10-112.
[21] Healy, L. and L. Ruban (2015), Atlas of Human Pluripotent Stem Cells in Culture, Springer US, Boston, MA, http://dx.doi.org/10.1007/978-1-4899-7507-2.
[40] ISCBI (2009), “Consensus Guidance for Banking and Supply of Human Embryonic Stem Cell Lines for Research Purposes”, Stem Cell Reviews and Reports, Vol. 5/4, pp. 301-314, http://dx.doi.org/10.1007/s12015-009-9085-x.
[22] Katkov, I. et al. (2006), “Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells”, Cryobiology, Vol. 53/2, pp. 194-205, http://dx.doi.org/10.1016/j.cryobiol.2006.05.005.
[30] Kleensang, A. et al. (2016), “Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function”, Scientific Reports, Vol. 6/1, http://dx.doi.org/10.1038/srep28994.
[17] Klein, S. et al. (2013), “An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung”, Particle and Fibre Toxicology, Vol. 10/1, p. 31, http://dx.doi.org/10.1186/1743-8977-10-31.
[35] Calafell, F. (ed.) (2015), “Human Biosample Authentication Using the High-Throughput, Cost-Effective SNPtraceTM System”, PLOS ONE, Vol. 10/2, p. e0116218, http://dx.doi.org/10.1371/journal.pone.0116218.
[4] Lorge, E. et al. (2016), “Standardized cell sources and recommendations for good cell culture practices in genotoxicity testing”, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Vol. 809, pp. 1-15, http://dx.doi.org/10.1016/j.mrgentox.2016.08.001.
[34] Marx, V. (2014), “Cell-line authentication demystified”, Nature Methods, Vol. 11/5, pp. 483-488, http://dx.doi.org/10.1038/nmeth.2932.
[45] Meza-Zepeda, L. et al. (2008), “High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence”, Journal of Cellular and Molecular Medicine, Vol. 12/2, pp. 553-563, http://dx.doi.org/10.1111/j.1582-4934.2007.00146.x.
[63] Nesslany, F. (2017), “The current limitations of in vitro genotoxicity testing and their relevance to the in vivo situation”, Food and Chemical Toxicology, Vol. 106, pp. 609-615, http://dx.doi.org/10.1016/j.fct.2016.08.035.
[42] OECD (2016), Guidance Document on the In Vitro Bhas 42 Cell Transformation Assay, OECD Publishing, Paris, http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2016)1&doclanguage=en.
[32] OECD (2016), Test No. 455: Performance-Based Test Guideline for Stably Transfected Transactivation In Vitro Assays to Detect Estrogen Receptor Agonists and Antagonists, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264265295-en.
[62] OECD (2008), Detailed Review Paper on the Use of Metabolising Systems for In Vitro Testing of Endocrine Disruptors, OECD Publishing, Paris.
[61] OECD (1997), Test No. 471: Bacterial Reverse Mutation Test, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264071247-en.
[41] Ono, K. et al. (2007), “Species identification of animal cells by nested PCR targeted to mitochondrial DNA”, In Vitro Cellular & Developmental Biology - Animal, Vol. 43/5-6, pp. 168-175, http://dx.doi.org/10.1007/s11626-007-9033-5.
[3] Pamies, D. (2016), “Good Cell Culture Practice for stem cells and stem-cell-derived models”, ALTEX, http://dx.doi.org/10.14573/altex.1607121.
[58] Paschos, N. et al. (2014), “Advances in tissue engineering through stem cell-based co-culture”, Journal of Tissue Engineering and Regenerative Medicine, Vol. 9/5, pp. 488-503, http://dx.doi.org/10.1002/term.1870.
[16] Phelan, M. and G. Lawler (2001), “Cell Counting”, Current Protocols in Cytometry, Vol. 00/1, pp. A.3A.1-A.3A.4, http://dx.doi.org/10.1002/0471142956.cya03as00.
[49] Pistollato, F. et al. (2014), “Development of a pluripotent stem cell derived neuronal model to identify chemically induced pathway perturbations in relation to neurotoxicity: Effects of CREB pathway inhibition”, Toxicology and Applied Pharmacology, Vol. 280/2, pp. 378-388, http://dx.doi.org/10.1016/j.taap.2014.08.007.
[12] Riss, T. and R. Moravec (2004), “Use of Multiple Assay Endpoints to Investigate the Effects of Incubation Time, Dose of Toxin, and Plating Density in Cell-Based Cytotoxicity Assays”, ASSAY and Drug Development Technologies, Vol. 2/1, pp. 51-62, http://dx.doi.org/10.1089/154065804322966315.
[50] Robertson, C., D. Tran and S. George (2013), “Concise Review: Maturation Phases of Human Pluripotent Stem Cell-Derived Cardiomyocytes”, STEM CELLS, Vol. 31/5, pp. 829-837, http://dx.doi.org/10.1002/stem.1331.
[54] Schaaf, S. et al. (2011), “Human Engineered Heart Tissue as a Versatile Tool in Basic Research and Preclinical Toxicology”, PLoS ONE, Vol. 6/10, p. e26397, http://dx.doi.org/10.1371/journal.pone.0026397.
[20] Sheridan, S. et al. (2008), “Microporous Membrane Growth Substrates for Embryonic Stem Cell Culture and Differentiation”, in Methods in Cell Biology, Stem Cell Culture, Elsevier, http://dx.doi.org/10.1016/s0091-679x(08)00003-4.
[51] Snir, M. et al. (2003), “Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes”, American Journal of Physiology-Heart and Circulatory Physiology, Vol. 285/6, pp. H2355-H2363, http://dx.doi.org/10.1152/ajpheart.00020.2003.
[55] Soares, C. et al. (2012), “2D and 3D-Organized Cardiac Cells Shows Differences in Cellular Morphology, Adhesion Junctions, Presence of Myofibrils and Protein Expression”, PLoS ONE, Vol. 7/5, p. e38147, http://dx.doi.org/10.1371/journal.pone.0038147.
[2] Soldatow, V. et al. (2013), “In vitro models for liver toxicity testing”, Toxicol. Res., Vol. 2/1, pp. 23-39, http://dx.doi.org/10.1039/c2tx20051a.
[46] Stacey, G. (2011), “Cell Culture Contamination”, in Methods in Molecular Biology, Cancer Cell Culture, Humana Press, Totowa, NJ, http://dx.doi.org/10.1007/978-1-61779-080-5_7.
[6] Stacey, G. et al. (2016), “Ensuring the Quality of Stem Cell-Derived In Vitro Models for Toxicity Testing”, in Advances in Experimental Medicine and Biology, Validation of Alternative Methods for Toxicity Testing, Springer International Publishing, Cham, http://dx.doi.org/10.1007/978-3-319-33826-2_11.
[8] Stacey, G. and T. Hartung (2006), “Availability, Standardization and Safety of Human Cells and Tissues for Drug Screening and Testing”, in Drug Testing in vitro, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, http://dx.doi.org/10.1002/9783527609611.ch9.
[19] Tallawi, M. et al. (2015), “Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review”, Journal of The Royal Society Interface, Vol. 12/108, p. 20150254, http://dx.doi.org/10.1098/rsif.2015.0254.
[26] UKCCCR (2000), “UKCCCR Guidelines for the Use of Cell Lines in Cancer Research”, British Journal of Cancer, Vol. 82/9, pp. 1495-1509, http://dx.doi.org/10.1054/bjoc.1999.1169.
[56] Valarmathi, M. et al. (2010), “A 3-D cardiac muscle construct for exploring adult marrow stem cell based myocardial regeneration”, Biomaterials, Vol. 31/12, pp. 3185-3200, http://dx.doi.org/10.1016/j.biomaterials.2010.01.041.
[57] van Spreeuwel, A. et al. (2014), “The influence of matrix (an)isotropy on cardiomyocyte contraction in engineered cardiac microtissues”, Integr. Biol., Vol. 6/4, pp. 422-429, http://dx.doi.org/10.1039/c3ib40219c.
[31] Vogel, G. (2010), “To Scientists' Dismay, Mixed-Up Cell Lines Strike Again”, Science, Vol. 329/5995, pp. 1004-1004, http://dx.doi.org/10.1126/science.329.5995.1004.
[65] Wang, S. et al. (2013), “Towards an integratedin vitrostrategy for estrogenicity testing”, Journal of Applied Toxicology, Vol. 34/9, pp. 1031-1040, http://dx.doi.org/10.1002/jat.2928.
[1] Watson, D., R. Hunziker and J. Wikswo (2017), “Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology”, Experimental Biology and Medicine, Vol. 242/16, pp. 1559-1572, http://dx.doi.org/10.1177/1535370217732765.
[66] Williams, D. et al. (2013), “Novel in vitro and mathematical models for the prediction of chemical toxicity”, Toxicol. Res., Vol. 2/1, pp. 40-59, http://dx.doi.org/10.1039/c2tx20031g.
[13] Wilson, H. et al. (2015), “Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells”, Fluids and Barriers of the CNS, Vol. 12/1, http://dx.doi.org/10.1186/s12987-015-0007-9.
[48] Young, L. et al. (2010), “Detection of Mycoplasma in cell cultures”, Nature Protocols, Vol. 5/5, pp. 929-934, http://dx.doi.org/10.1038/nprot.2010.43.
[36] Yu, M. et al. (2015), “A resource for cell line authentication, annotation and quality control”, Nature, Vol. 520/7547, pp. 307-311, http://dx.doi.org/10.1038/nature14397.