[14] Austin, R. et al. (2002), “The Influence of Nonspecific Microsomal Binding on Apparent Intrinsic Clearance, and Its Prediction from Physicochemical Properties”, Drug Metabolism and Disposition, Vol. 30/12, pp. 1497-1503, http://dx.doi.org/10.1124/dmd.30.12.1497.
[12] Bellwon, P. et al. (2015), “Kinetics and dynamics of cyclosporine A in three hepatic cell culture systems”, Toxicology in Vitro, Vol. 30/1, pp. 62-78, http://dx.doi.org/10.1016/j.tiv.2015.07.016.
[30] Bessems, J. et al. (2014), “PBTK modelling platforms and parameter estimation tools to enable animal-free risk assessment”, Regulatory Toxicology and Pharmacology, Vol. 68/1, pp. 119-139, http://dx.doi.org/10.1016/j.yrtph.2013.11.008.
[24] Blaauboer, B. et al. (2012), “The use of biomarkers of toxicity for integrating in vitro hazard estimates into risk assessment for humans”, ALTEX, Vol. 29/4, pp. 411-425, http://dx.doi.org/10.14573/altex.2012.4.411.
[26] Bosgra, S. and J. Westerhout (2015), “Interpreting in vitro developmental toxicity test battery results: The consideration of toxicokinetics”, Reproductive Toxicology, Vol. 55, pp. 73-80, http://dx.doi.org/10.1016/j.reprotox.2014.11.001.
[13] Broeders, J., B. Blaauboer and J. Hermens (2011), “Development of a negligible depletion-solid phase microextraction method to determine the free concentration of chlorpromazine in aqueous samples containing albumin”, Journal of Chromatography A, Vol. 1218/47, pp. 8529-8535, http://dx.doi.org/10.1016/j.chroma.2011.09.064.
[2] Groothuis, F. et al. (2015), “Dose metric considerations in in vitro assays to improve quantitative in vitro–in vivo dose extrapolations”, Toxicology, Vol. 332, pp. 30-40, http://dx.doi.org/10.1016/j.tox.2013.08.012.
[15] Gülden, M. et al. (2010), “Cytotoxic potency of H2O2 in cell cultures: Impact of cell concentration and exposure time”, Free Radical Biology and Medicine, Vol. 49/8, pp. 1298-1305, http://dx.doi.org/10.1016/j.freeradbiomed.2010.07.015.
[11] Gülden, M., S. Mörchel and H. Seibert (2001), “Factors influencing nominal effective concentrations of chemical compounds in vitro: cell concentration”, Toxicology in Vitro, Vol. 15/3, pp. 233-243, http://dx.doi.org/10.1016/s0887-2333(01)00008-x.
[10] Gülden, M. and H. Seibert (2003), “In vitro–in vivo extrapolation: estimation of human serum concentrations of chemicals equivalent to cytotoxic concentrations in vitro”, Toxicology, Vol. 189/3, pp. 211-222, http://dx.doi.org/10.1016/s0300-483x(03)00146-x.
[5] Heringa, M. and J. Hermens (2003), “Measurement of free concentrations using negligible depletion-solid phase microextraction (nd-SPME)”, TrAC Trends in Analytical Chemistry, Vol. 22/9, pp. 575-587, http://dx.doi.org/10.1016/s0165-9936(03)01006-9.
[1] Heringa, M. et al. (2006), “Measurement of the free concentration of octylphenol in biological samples with negligible depletion-solid phase microextraction (nd-SPME): Analysis of matrix effects”, Journal of Chromatography B, Vol. 834/1-2, pp. 35-41, http://dx.doi.org/10.1016/j.jchromb.2006.02.009.
[9] Heringa, M. et al. (2004), “Toward More Useful In Vitro Toxicity Data with Measured Free Concentrations”, Environmental Science & Technology, Vol. 38/23, pp. 6263-6270, http://dx.doi.org/10.1021/es049285w.
[16] Knöbel, M. et al. (2012), “Predicting Adult Fish Acute Lethality with the Zebrafish Embryo: Relevance of Test Duration, Endpoints, Compound Properties, and Exposure Concentration Analysis”, Environmental Science & Technology, Vol. 46/17, pp. 9690-9700, http://dx.doi.org/10.1021/es301729q.
[3] Kramer, N. et al. (2015), “Biokinetics in repeated-dosing in vitro drug toxicity studies”, Toxicology in Vitro, Vol. 30/1, pp. 217-224, http://dx.doi.org/10.1016/j.tiv.2015.09.005.
[6] Kramer, N. et al. (2012), “Quantifying Processes Determining the Free Concentration of Phenanthrene in Basal Cytotoxicity Assays”, Chemical Research in Toxicology, Vol. 25/2, pp. 436-445, http://dx.doi.org/10.1021/tx200479k.
[25] Leist, M. et al. (2014), “Consensus report on the future of animal-free systemic toxicity testing”, ALTEX, pp. 341-356, http://dx.doi.org/10.14573/altex.1406091.
[29] Loizou, G. et al. (2008), “Development of good modelling practice for physiologically based pharmacokinetic models for use in risk assessment: The first steps”, Regulatory Toxicology and Pharmacology, Vol. 50/3, pp. 400-411, http://dx.doi.org/10.1016/j.yrtph.2008.01.011.
[28] Louisse, J. et al. (2010), “The Use of In Vitro Toxicity Data and Physiologically Based Kinetic Modeling to Predict Dose-Response Curves for In Vivo Developmental Toxicity of Glycol Ethers in Rat and Man”, Toxicological Sciences, Vol. 118/2, pp. 470-484, http://dx.doi.org/10.1093/toxsci/kfq270.
[17] OECD (2011), Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264069923-en.
[18] OECD (2006), Draft proposal for a new guideline. In: Fish Embryo Toxicity (FET), OECD Publishing, Paris.
[19] OECD (2006), Test No. 221: Lemna sp. Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264016194-en.
[7] Pomponio, G. et al. (2015), “In vitro kinetics of amiodarone and its major metabolite in two human liver cell models after acute and repeated treatments”, Toxicology in Vitro, Vol. 30/1, pp. 36-51, http://dx.doi.org/10.1016/j.tiv.2014.12.012.
[20] Reinert, K., J. Giddings and L. Judd (2002), “Effects analysis of time-varying or repeated exposures in aquatic ecological risk assessment of agrochemicals”, Environmental Toxicology and Chemistry, Vol. 21/9, pp. 1977-1992, http://dx.doi.org/10.1002/etc.5620210928.
[21] Riedl, J. and R. Altenburger (2007), “Physicochemical substance properties as indicators for unreliable exposure in microplate-based bioassays”, Chemosphere, Vol. 67/11, pp. 2210-2220, http://dx.doi.org/10.1016/j.chemosphere.2006.12.022.
[8] Schmieder, P. et al. (2014), “A rule-based expert system for chemical prioritization using effects-based chemical categories”, SAR and QSAR in Environmental Research, Vol. 25/4, pp. 253-287, http://dx.doi.org/10.1080/1062936x.2014.898691.
[23] Smith, K. et al. (2013), “The dosing determines mutagenicity of hydrophobic compounds in the Ames II assay with metabolic transformation: Passive dosing versus solvent spiking”, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Vol. 750/1-2, pp. 12-18, http://dx.doi.org/10.1016/j.mrgentox.2012.07.006.
[22] Smith, K., G. Oostingh and P. Mayer (2010), “Passive Dosing for Producing Defined and Constant Exposure of Hydrophobic Organic Compounds during in Vitro Toxicity Tests”, Chemical Research in Toxicology, Vol. 23/1, pp. 55-65, http://dx.doi.org/10.1021/tx900274j.
[4] Tanneberger, K. et al. (2010), “Effects of Solvents and Dosing Procedure on Chemical Toxicity in Cell-Basedin VitroAssays”, Environmental Science & Technology, Vol. 44/12, pp. 4775-4781, http://dx.doi.org/10.1021/es100045y.
[27] Zimmer, B. et al. (2014), “Profiling of drugs and environmental chemicals for functional impairment of neural crest migration in a novel stem cell-based test battery”, Archives of Toxicology, http://dx.doi.org/10.1007/s00204-014-1231-9.