[29] Belot, N. et al. (2017), “Adaptation of the KeratinoSens™ skin sensitization test to animal-product-free cell culture”, ALTEX, pp. 560-564, http://dx.doi.org/10.14573/altex.1701311.
[18] Beltran, P. et al. (2014), “Adaptation to serum-free culture of HEK 293T and Huh7.0 cells”, BMC Proceedings, Vol. 8/Suppl 4, p. P259, http://dx.doi.org/10.1186/1753-6561-8-s4-p259.
[30] Bieback, K. et al. (2009), “Human Alternatives to Fetal Bovine Serum for the Expansion of Mesenchymal Stromal Cells from Bone Marrow”, STEM CELLS, Vol. 27/9, pp. 2331-2341, http://dx.doi.org/10.1002/stem.139.
[16] Bilgen, B. et al. (2007), “FBS suppresses TGF-β1-induced chondrogenesis in synoviocyte pellet cultures while dexamethasone and dynamic stimuli are beneficial”, Journal of Tissue Engineering and Regenerative Medicine, Vol. 1/6, pp. 436-442, http://dx.doi.org/10.1002/term.56.
[24] Blázquez-Prunera, A. et al. (2017), “Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction”, Stem Cell Research & Therapy, Vol. 8/1, http://dx.doi.org/10.1186/s13287-017-0552-z.
[32] Chen, Y. et al. (2008), “NS21: Re-defined and modified supplement B27 for neuronal cultures”, Journal of Neuroscience Methods, Vol. 171/2, pp. 239-247, http://dx.doi.org/10.1016/j.jneumeth.2008.03.013.
[9] Coecke, S. et al. (2005), “Guidance on good cell culture practice: A Report of the Second ECVAM Task Force on good cell culture practice”, ATLA Alternatives to Laboratory Animals, Vol. 33/3, pp. 261-287.
[35] Colatsky, T. et al. (2016), “The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative — Update on progress”, Journal of Pharmacological and Toxicological Methods, Vol. 81, pp. 15-20, http://dx.doi.org/10.1016/j.vascn.2016.06.002.
[22] Dang, Z. and C. Lowik (2005), “Removal of serum factors by charcoal treatment promotes adipogenesis via a MAPK-dependent pathway”, Molecular and Cellular Biochemistry, Vol. 268/1-2, pp. 159-167, http://dx.doi.org/10.1007/s11010-005-3857-7.
[25] Dessels, C., M. Potgieter and M. Pepper (2016), “Making the Switch: Alternatives to Fetal Bovine Serum for Adipose-Derived Stromal Cell Expansion”, Frontiers in Cell and Developmental Biology, Vol. 4, http://dx.doi.org/10.3389/fcell.2016.00115.
[3] Ekins, S., J. Olechno and A. Williams (2013), “Dispensing Processes Impact Apparent Biological Activity as Determined by Computational and Statistical Analyses”, PLoS ONE, Vol. 8/5, p. e62325, http://dx.doi.org/10.1371/journal.pone.0062325.
[11] EMA (2011), Guideline on bioanalytical method validation.
[26] Even, M., C. Sandusky and N. Barnard (2006), “Serum-free hybridoma culture: ethical, scientific and safety considerations”, Trends in Biotechnology, Vol. 24/3, pp. 105-108, http://dx.doi.org/10.1016/j.tibtech.2006.01.001.
[6] FDA (2001), Guidance for Industry Bioanalytical Method Validation.
[13] Festen, R. (2007), “Understanding Animal Sera: Considerations for Use in the Production of Biological Therapeutics”, in Medicines from Animal Cell Culture, John Wiley & Sons, Ltd, Chichester, UK, http://dx.doi.org/10.1002/9780470723791.ch4.
[15] Geraghty, R. et al. (2014), “Guidelines for the use of cell lines in biomedical research”, British Journal of Cancer, Vol. 111/6, pp. 1021-1046, http://dx.doi.org/10.1038/bjc.2014.166.
[4] Grant, R. et al. (2009), “Achieving Accurate Compound Concentration in Cell-Based Screening: Validation of Acoustic Droplet Ejection Technology”, Journal of Biomolecular Screening, Vol. 14/5, pp. 452-459, http://dx.doi.org/10.1177/1087057109336588.
[27] Gstraunthaler, G., T. Lindl and J. van der Valk (2013), “A plea to reduce or replace fetal bovine serum in cell culture media”, Cytotechnology, Vol. 65/5, pp. 791-793, http://dx.doi.org/10.1007/s10616-013-9633-8.
[23] Jochems, C. et al. (2002), “The use of fetal bovine serum: ethical or scientific problem?”, Alternatives to Laboratory Animals, Vol. 30, pp. 219-227.
[28] Kanafi, M., R. Pal and P. Gupta (2013), “Phenotypic and functional comparison of optimum culture conditions for upscaling of dental pulp stem cells”, Cell Biology International, Vol. 37/2, pp. 126-136, http://dx.doi.org/10.1002/cbin.10021.
[19] Leong, D. et al. (2017), “Evaluation and use of disaccharides as energy source in protein-free mammalian cell cultures”, Scientific Reports, Vol. 7/1, http://dx.doi.org/10.1038/srep45216.
[5] OECD (2016), Application of Good Laboratory Practice Principles to Computerised Systems, OECD Series on Principles on Good Laboratory Practice and Compliance Monitoring, No. 17, OECD Publishing Paris.
[2] OECD (2004), Test No. 432: In Vitro 3T3 NRU Phototoxicity Test, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264071162-en.
[8] OECD (2000), Compliance of Laboratory Suppliers with GLP Principles, OECD Series on Principles of Good Laboratory Practice and Compliance Monitoring, No. 5, OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264078611-en.
[1] OECD (1998), OECD Principles on Good Laboratory Practice, OECD Series on Principles of Good Laboratory Practice and Compliance Monitoring, No. 1, OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264078536-en.
[7] OMCL (2011), OMCL Network of the Council of Europe Quality Assurance Document. Qualification of Equipment Core Document: PA/PH/OMCL (08) 73 2R.
[10] Pamies, D. et al. (2016), “Good Cell Culture Practice for stem cells and stem-cell-derived models”, ALTEX, http://dx.doi.org/10.14573/altex.1607121.
[37] Pistollato, F. et al. (2012), “Standardization of pluripotent stem cell cultures for toxicity testing”, Expert Opinion on Drug Metabolism & Toxicology, Vol. 8/2, pp. 239-257, http://dx.doi.org/10.1517/17425255.2012.639763.
[33] Price, P. (2017), “Best practices for media selection for mammalian cells”, In Vitro Cellular & Developmental Biology - Animal, Vol. 53/8, pp. 673-681, http://dx.doi.org/10.1007/s11626-017-0186-6.
[14] Sadeghi, M. et al. (2017), “Virome of US bovine calf serum”, Biologicals, Vol. 46, pp. 64-67, http://dx.doi.org/10.1016/j.biologicals.2016.12.009.
[17] Shahdadfar, A. et al. (2005), “In Vitro Expansion of Human Mesenchymal Stem Cells: Choice of Serum Is a Determinant of Cell Proliferation, Differentiation, Gene Expression, and Transcriptome Stability”, Stem Cells, Vol. 23/9, pp. 1357-1366, http://dx.doi.org/10.1634/stemcells.2005-0094.
[20] Sinacore, M., D. Drapeau and S. Adamson (2000), “Adaptation of Mammalian Cells to Growth in Serum-Free Media”, Molecular Biotechnology, Vol. 15/3, pp. 249-258, http://dx.doi.org/10.1385/mb:15:3:249.
[39] Stacey, G. and J. Davis (eds.) (2007), Medicines from Animal Cell Culture, John Wiley & Sons, Ltd, Chichester, UK, http://dx.doi.org/10.1002/9780470723791.
[31] van der Valk, J. (2018), “Fetal bovine serum (FBS): Past – present – future”, ALTEX, pp. 99-118, http://dx.doi.org/10.14573/altex.1705101.
[21] van der Valk, J. et al. (2010), “Optimization of chemically defined cell culture media – Replacing fetal bovine serum in mammalian in vitro methods”, Toxicology in Vitro, Vol. 24/4, pp. 1053-1063, http://dx.doi.org/10.1016/j.tiv.2010.03.016.
[36] van Velthoven, C. et al. (2017), “Transcriptional Profiling of Quiescent Muscle Stem Cells In Vivo”, Cell Reports, Vol. 21/7, pp. 1994-2004, http://dx.doi.org/10.1016/j.celrep.2017.10.037.
[12] Viswanathan, C. et al. (2007), “Quantitative Bioanalytical Methods Validation and Implementation: Best Practices for Chromatographic and Ligand Binding Assays”, Pharmaceutical Research, Vol. 24/10, pp. 1962-1973, http://dx.doi.org/10.1007/s11095-007-9291-7.
[38] Yamasaki, S. et al. (2014), “Generation of Human Induced Pluripotent Stem (iPS) Cells in Serum- and Feeder-Free Defined Culture and TGF-β1 Regulation of Pluripotency”, PLoS ONE, Vol. 9/1, p. e87151, http://dx.doi.org/10.1371/journal.pone.0087151.
[34] Zhao, A. et al. (2017), “Use of real-time cellular analysis and Plackett-Burman design to develop the serum-free media for PC-3 prostate cancer cells”, PLOS ONE, Vol. 12/9, p. e0185470, http://dx.doi.org/10.1371/journal.pone.0185470.