[16] Abrams, M. et al. (2017), Artificial Intelligence, Ethics and Enhanced Data Stewardship, The Information Accountability Foundation, Plano, Texas, http://informationaccountability.org/wp-content/uploads/Artificial-Intelligence-Ethics-and-Enhanced-Data-Stewardship.pdf.
[97] Acemoglu, D. und P. Restrepo (2018), “Artificial Intelligence, Automation and Work”, NBER Working Paper No. 24196.
[49] Agrawal, A., J. Gans und A. Goldfarb (2018), “Economic policy for artificial intelligence”, NBER Working Paper, No. 24690, http://dx.doi.org/10.3386/w24690.
[103] Agrawal, A., J. Gans und A. Goldfarb (2018), Prediction Machines: The Simple Economics of Artificial Intelligence, Harvard Business School Press, Brighton, MA.
[71] Autor, D. und A. Salomons (2018), “Is automation labor-displacing? Productivity growth, employment, and the labor share”, NBER Working Paper, No. 24871, http://dx.doi.org/10.3386/w24871.
[63] Bajari, P. et al. (2018), “The impact of big data on firm performance: An empirical investigation”, NBER Working Paper, No. 24334, http://dx.doi.org/10.3386/w24334.
[29] Barocas, S. und A. Selbst (2016), “Big Data’s Disparate Impact”, California Law Review, Vol. 104, S. 671-729, http://www.californialawreview.org/wp-content/uploads/2016/06/2Barocas-Selbst.pdf.
[23] Berk, R. und J. Hyatt (2015), “Machine Learning Forecasts of Risk to Inform Sentencing Decisions”, Federal Sentencing Reporter, Vol. 27/4, S. 222-228, http://dx.doi.org/10.1525/fsr.2015.27.4.222.
[44] Borges, G. (2017), Liability for Machine-Made Decisions: Gaps and Potential Solutions, Präsentation bei der OECD-Konferenz “AI: Intelligent Machines, Smart Policies”, Paris, 26.‑27. Oktober, http://www.oecd.org/going-digital/ai-intelligent-machines-smart-policies/conference-agenda/ai-intelligent-machines-smart-policies-borges.pdf.
[37] Brundage, M. et al. (2018), The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation, Future of Humanity Institute, University of Oxford, Centre for the Study of Existential Risk, University of Cambridge, Centre for a New American Security, Electronic Frontier Foundation and Open AI, arXiv:1802.07228, https://arxiv.org/ftp/arxiv/papers/1802/1802.07228.pdf.
[98] Brynjolfsson, E. und T. Mitchell (2017), “What can machine learning do? Workforce implications”, Science, Vol. 358/6370, S. 1530-1534, http://dx.doi.org/10.1126/science.aap8062.
[50] Brynjolfsson, E., D. Rock und C. Syverson (2017), “Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics”, NBER Working Paper, No. 24001, http://dx.doi.org/10.3386/w24001.
[31] Burgess, M. (2016), “Holding AI to account: Will algorithms ever be free of bias if they are created by humans?”, WIRED, 11. Januar, https://www.wired.co.uk/article/creating-transparent-ai-algorithms-machine-learning.
[93] Byhovskaya, A. (2018), Overview of the national strategies on work 4.0: a coherent analysis of the role of the social partners, Europäischer Wirtschafts- und Sozialausschuss, Brüssel, https://www.eesc.europa.eu/sites/default/files/files/qe-02-18-923-en-n.pdf.
[9] Cellarius, M. (2017), Artificial Intelligence and the Right to Informational Self-determination, The Forum Network, OECD, Paris, https://www.oecd-forum.org/users/75927-mathias-cellarius/posts/28608-artificial-intelligence-and-the-right-to-informational-self-determination.
[24] Chouldechova, A. (2016), “Fair prediction with disparate impact: A study of bias in recidivism prediction instruments”, arXiv:1610.07524, https://arxiv.org/abs/1610.07524.
[36] Citron, D. und F. Pasquale (2014), “The Scored Society: Due Process for Automated Predictions”, Washington Law Review, Vol. 89, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2376209.
[51] Cockburn, I., R. Henderson und S. Stern (2018), “The impact of artificial intelligence on innovation”, NBER Working Paper, No. 24449, http://dx.doi.org/10.3386/w24449.
[30] Crawford, K. (2016), “Artificial Intelligence’s White Guy Problem”, The New York Times, 26. Juni, https://www.nytimes.com/2016/06/26/opinion/sunday/artificial-intelligences-white-guy-problem.html?_r=0.
[74] Daugherty, P. und H. Wilson (2018), Human Machine: Reimagining Work in the Age of AI, Harvard Business Review Press, Cambridge, MA.
[92] Deloitte (2017), HR Technology Disruptions for 2018: Productivity, Design and Intelligence Reign, Deloitte, http://marketing.bersin.com/rs/976-LMP-699/images/HRTechDisruptions2018-Report-100517.pdf.
[104] Deming, D. (2017), “The Growing Importance of Social Skills in the Labor Market”, The Quarterly Journal of Economics, Vol. 132/4, S. 1593-1640, http://dx.doi.org/10.1093/qje/qjx022.
[69] Deutschland (2018), “Eckpunkte der Bundesregierung für eine Strategie Künstliche Intelligenz”, Gemeinsame Pressemitteilung der Bundesregierung und des BMWi, 18. Juli, Bundesministerium für Wirtschaft und Energie, https://www.bmwi.de/Redaktion/EN/Pressemitteilungen/2018/20180718-key-points-for-federal-government-strategy-on-artificial-intelligence.html.
[82] Dormehl, L. (2018), “Meet the British whiz kid who fights for justice with robo-lawyer sidekick”, Digital Trends, 25. März, https://www.digitaltrends.com/cool-tech/robot-lawyer-free-acess-justice/.
[28] Doshi-Velez, F. et al. (2017), “Accountability of AI under the law: The role of explanation”, arXiv arXiv:1711.01134v2, https://arxiv.org/pdf/1711.01134v2.pdf.
[60] Dowlin, N. (2016), “CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy”, MSR-TR-2016-3 Microsoft Research, https://www.microsoft.com/en-us/research/wp-content/uploads/2016/04/CryptonetsTechReport.pdf.
[33] Dressel, J. und H. Farid (2018), “The accuracy, fairness and limits of predicting recidivism”, Science Advances, Vol. 4/1, http://advances.sciencemag.org/content/4/1/eaao5580.
[79] Elliott, S. (2017), Computers and the Future of Skill Demand, Educational Research and Innovation, OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264284395-en.
[67] EPO (2018), Patenting Artificial Intelligence – Conference Summary, Europäisches Patentamt, München, 30. Mai, http://documents.epo.org/projects/babylon/acad.nsf/0/D9F20464038C0753C125829E0031B814/$FILE/summary_conference_artificial_intelligence_en.pdf.
[45] EWSA (2017), Künstliche Intelligenz – die Auswirkungen der künstlichen Intelligenz auf den (digitalen) Binnenmarkt sowie Produktion, Verbrauch, Beschäftigung und Gesellschaft, Europäischer Wirtschafts- und Sozialausschuss, Brüssel, https://www.eesc.europa.eu/en/our-work/opinions-information-reports/opinions/artificial-intelligence.
[101] Finnland (2017), “Artificial intelligence programme” Webseite, Ministry of Economic Affairs and Employment, https://tem.fi/en/artificial-intelligence-programme.
[15] Flanagan, M., D. Howe und H. Nissenbaum (2008), “Embodying values in technology: Theory and practice”, in van den Hoven, Jeroen und J. Weckert (Hrsg.), S. 322-353, http://dx.doi.org/10.1017/cbo9780511498725.017.
[40] Freeman, R. (2017), Evolution or Revolution? The Future of Regulation and Liability for AI, Präsentation bei der OECD-Konferenz “AI: Intelligent Machines, Smart Policies”, Paris, 26.-27. Oktober, http://www.oecd.org/going-digital/ai-intelligent-machines-smart-policies/conference-agenda/ai-intelligent-machines-smart-policies-freeman.pdf.
[83] Frey, C. und M. Osborne (2017), “The future of employment: How susceptible are Jobs to computerisation?”, Technological Forecasting and Social Change, Vol. 114, S. 254-280, http://dx.doi.org/10.1016/j.techfore.2016.08.019.
[88] Gartner (2017), “Gartner says by 2020, artificial intelligence will create more jobs than it eliminates”, Pressemitteilung, 13. Dezember, Gartner, https://www.gartner.com/en/newsroom/press-releases/2017-12-13-gartner-says-by-2020-artificial-intelligence-will-create-more-jobs-than-it-eliminates.
[41] Golson, J. (2016), “Google’s self-driving cars rack up 3 million simulated miles every day”, The Verge, 1. Februar, https://www.theverge.com/2016/2/1/10892020/google-self-driving-simulator-3-million-miles.
[38] Goodfellow, I., J. Shlens und C. Szegedy (2015), “Explaining and harnessing adversarial examples”, arXiv:1412.6572, https://arxiv.org/pdf/1412.6572.pdf.
[78] Goos, M., A. Manning und A. Salomons (2014), “Explaining Job Polarization: Routine-Biased Technological Change and Offshoring”, American Economic Review, Vol. 104/8, S. 2509-2526, http://dx.doi.org/10.1257/aer.104.8.2509.
[76] Graetz, G. und G. Michaels (2018), “Robots at Work”, Review of Economics and Statistics, Vol. 100/5, S. 753-768, http://dx.doi.org/10.1162/rest_a_00754.
[14] Harkous, H. (2018), “Polisis: Automated Analysis and Presentation of Privacy Policies Using Deep Learning”, arXiv arXiv:1802.02561v2, https://arxiv.org/pdf/1802.02561.pdf.
[6] Heiner, D. und C. Nguyen (2018), “Amplify Human Ingenuity with Intelligent Technology”, Shaping Human-Centered Artificial Intelligence, A.Ideas Series, The Forum Network, OECD, Paris, https://www.oecd-forum.org/users/86008-david-heiner-and-carolyn-nguyen/posts/30653-shaping-human-centered-artificial-intelligence.
[46] Helgason, S. (1997), Towards Performance-Based Accountability: Issues for Discussion, Public Management Service, OECD, Paris, http://www.oecd.org/governance/budgeting/1902720.pdf.
[5] Indien (2018), National Strategy for Artificial Intelligence #AIforall, Discussion Paper, NITI Aayog, Juni, http://niti.gov.in/writereaddata/files/document_publication/NationalStrategy-for-AI-Discussion-Paper.pdf.
[43] Ingels, H. (2017), Artificial Intelligence and EU Product Liability Law, Präsentation bei der OECD-Konferenz “AI: Intelligent Machines, Smart Policies”, Paris, 26.-27. Oktober, http://www.oecd.org/going-digital/ai-intelligent-machines-smart-policies/conference-agenda/ai-intelligent-machines-smart-policies-ingels.pdf.
[81] ITF (2017), “Driverless Trucks: New Report Maps Out Global Action on Driver Jobs and Legal Issues”, Weltverkehrsforum, Paris, https://www.itf-oecd.org/driverless-trucks-new-report-maps-out-global-action-driver-jobs-and-legal-issues.
[58] Jain, S. (2017), “NanoNets: How to use Deep Learning when you have Limited Data, Part 2: Building Object Detection Models with Almost no Hardware” Medium, 30. Januar, https://medium.com/nanonets/nanonets-how-to-use-deep-learning-when-you-have-limited-data-f68c0b512cab.
[100] Kanada (2017), “Government of Canada launches the Global Skills Strategy”, Pressemitteilung, Immigration, Refugees and Citizenship Canada, 12. Juni, https://www.canada.ca/en/immigration-refugees-citizenship/news/2017/06/government_of_canadalaunchestheglobalskillsstrategy.html.
[91] Kasparov, G. (2018), Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins, Public Affairs, New York.
[59] Kendall, A. (2017), “Deep Learning Is Not Good Enough, We Need Bayesian Deep Learning for Safe AI”, Alex Kendall blog, 23. Mai, https://alexgkendall.com/computer_vision/bayesian_deep_learning_for_safe_ai/.
[32] Knight, W. (2017), “The Financial World Wants to Open AI’s Black Boxes”, MIT Technology Review, 13. April, https://www.technologyreview.com/s/604122/the-financial-world-wants-to-open-ais-black-boxes/.
[26] Kosack, S. und A. Fung (2014), “Does Transparency Improve Governance”, Annual Review of Political Science, Vol. 17, S. 65-87, https://www.annualreviews.org/doi/pdf/10.1146/annurev-polisci-032210-144356.
[2] Kosinski, M., D. Stillwell und T. Graepel (2013), “Private traits and attributes are predictable from digital records of human behavior”, PNAS, 11. März, http://www.pnas.org/content/pnas/early/2013/03/06/1218772110.full.pdf.
[39] Kurakin, A., I. Goodfellow und S. Bengio (2017), “Adversarial examples in the physical world”, arXiv arXiv:1607.02533v4, https://arxiv.org/abs/1607.02533.
[75] Lakhani, P. und B. Sundaram (2017), “Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks”, Radiology, Vol. 284/2, S. 574-582, http://dx.doi.org/10.1148/radiol.2017162326.
[106] Matheson, R. (2018), Artificial intelligence model “learns” from patient data to make cancer treatment less toxic, 9. August, http://news.mit.edu/2018/artificial-intelligence-model-learns-patient-data-cancer-treatment-less-toxic-0810.
[87] MGI (2017), Jobs Lost, Jobs Gained: Workforce Transitions in a Time of Automation, McKinsey Global Institute, New York, https://www.mckinsey.com/featured-insights/future-of-work/jobs-lost-jobs-gained-what-the-future-of-work-will-mean-for-jobs-skills-and-wages.
[77] Michaels, G., A. Natraj und J. Van Reenen (2014), “Has ICT Polarized Skill Demand? Evidence from Eleven Countries over Twenty-Five Years”, Review of Economics and Statistics, Vol. 96/1, S. 60-77, http://dx.doi.org/10.1162/rest_a_00366.
[84] Mims, C. (2010), “AI That Picks Stocks Better Than the Pros”, MIT Technology Review, 10. Juni, https://www.technologyreview.com/s/419341/ai-that-picks-stocks-better-than-the-pros/.
[102] MIT (2018), “Cybersecurity’s insidious new threat: workforce stress”, MIT Technology Review 7. August, https://www.technologyreview.com/s/611727/cybersecuritys-insidious-new-threat-workforce-stress/.
[56] Mousave, S., M. Schukat und E. Howley (2018), “Deep Reinforcement Learning: An Overview”, arXiv:1806.08894v1, https://arxiv.org/abs/1806.08894.
[17] Narayanan, A. (2018), “Tutorial: 21 fairness definitions and their politics”, https://www.youtube.com/watch?v=jIXIuYdnyyk.
[89] Nedelkoska, L. und G. Quintini (2018), “Automation, skills use and training”, OECD Social, Employment and Migration Working Papers, No. 202, OECD Publishing, Paris, https://dx.doi.org/10.1787/2e2f4eea-en.
[55] Neppel, C. (2017), AI: Intelligent Machines, Smart Policies, Präsentation bei der OECD-Konferenz “AI: Intelligent Machines, Smart Policies”, Paris, 26.-27. Oktober, http://www.oecd.org/going-digital/ai-intelligent-machines-smart-policies/conference-agenda/ai-intelligent-machines-smart-policies-neppel.pdf.
[54] OECD (erscheint demnächst), Enhanced Access to and Sharing of Data: Reconciling Risks and Benefits for Data Re-Use across Societies, OECD Publishing, Paris.
[61] OECD (2020), Going Digital: Den digitalen Wandel gestalten, das Leben verbessern, OECD Publishing, Paris, https://doi.org/10.1787/e78eb379-de.
[62] OECD (2019), An Introduction to Online Platforms and Their Role in the Digital Transformation, OECD Publishing, Paris, https://dx.doi.org/10.1787/53e5f593-en.
[35] OECD (2019), Empfehlung des Rats zu künstlicher Intelligenz, OECD, Paris, http://www.oecd.org/berlin/presse/Empfehlung-des-Rats-zu-kuenstlicher-Intelligenz.pdf.
[34] OECD (2019), Scoping Principles to Foster Trust in and Adoption of AI – Proposal by the Expert Group on Artificial Intelligence at the OECD (AIGO), OECD, Paris, http://oe.cd/ai.
[13] OECD (2018), “AI: Intelligent machines, smart policies: Conference summary”, OECD Digital Economy Papers, No. 270, OECD Publishing, Paris, http://dx.doi.org/10.1787/f1a650d9-en.
[90] OECD (2018), Job Creation and Local Economic Development 2018: Preparing for the Future of Work, OECD Publishing, Paris, https://dx.doi.org/10.1787/9789264305342-en.
[52] OECD (2018), OECD Science, Technology and Innovation Outlook 2018: Adapting to Technological and Societal Disruption, OECD Publishing, Paris, https://dx.doi.org/10.1787/sti_in_outlook-2018-en.
[48] OECD (2018), “Perspectives on innovation policies in the digital age”, in OECD Science, Technology and Innovation Outlook 2018: Adapting to Technological and Societal Disruption, OECD Publishing, Paris, https://dx.doi.org/10.1787/sti_in_outlook-2018-8-en.
[66] OECD (2017), Algorithms and Collusion: Competition Policy in the Digital Age, OECD Publishing, Paris, http://www.oecd.org/competition/algorithms-collusion-competition-policy-in-the-digital-age.html.
[96] OECD (2017), Getting Skills Right: Skills for Jobs Indicators, OECD Publishing, Paris, https://dx.doi.org/10.1787/9789264277878-en.
[20] OECD (2017), OECD Digital Economy Outlook 2017, OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264276284-en.
[68] OECD (2017), The Next Production Revolution: Implications for Governments and Business, OECD Publishing, Paris, https://dx.doi.org/10.1787/9789264271036-en.
[64] OECD (2016), “Big Data: Bringing Competition Policy to the Digital Era – Executive Summary”, OECD-Dokument DAF/COMP/M(2016)2/ANN4/FINAL, Direktion Finanz- und Unternehmensfragen (DAF), Wettbewerbsaussschuss, OECD, Paris, https://one.oecd.org/document/DAF/COMP/M(2016)2/ANN4/FINAL/en/pdf.
[12] OECD (2013), Recommendation of the Council concerning Guidelines Governing the Protection of Privacy and Transborder Flows of Personal Data, OECD, Paris, http://www.oecd.org/sti/ieconomy/2013-oecd-privacy-guidelines.pdf.
[8] OECD (2011), OECD-Leitsätze für multinationale Unternehmen, OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264122352-de.
[7] OHCHR (2011), Guiding Principles on Business and Human Rights, Hohes Kommissariat der Vereinten Nationen für Menschenrechte (OHCHR), https://www.ohchr.org/Documents/Publications/GuidingPrinciplesBusinessHR_EN.pdf.
[25] O’Neil, C. (2016), Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, Broadway Books, New York.
[53] OpenAI (2018), “AI and compute”, OpenAI blog, 16. Mai, https://blog.openai.com/ai-and-compute/.
[57] Pan, S. und Q. Yang (2010), “A Survey on Transfer Learning”, IEEE Transactions on Knowledge and Data Engineering, Vol. 22/10, S. 1345-1359, http://dx.doi.org/10.1109/TKDE.2009.191.
[11] Paper, I. (ed.) (2018), “Artificial intelligence and privacy”, Issues Paper, Juni, Office of the Victorian Information Commissioner, https://ovic.vic.gov.au/wp-content/uploads/2018/08/AI-Issues-Paper-V1.1.pdf.
[107] Patki, N., R. Wedge und K. Veeramachaneni (2016), “The Synthetic Data Vault”, in IEEEE Proceedings – 3rd IEEE International Conference on Data Science and Advanced Analytics (DSAA 2016), S. 399-410, http://dx.doi.org/10.1109/dsaa.2016.49.
[10] Privacy International and ARTICLE 19 (2018), “Privacy and Freedom of Expression in the Age of Artificial Intelligence” Scoping Paper, https://www.article19.org/wp-content/uploads/2018/04/Privacy-and-Freedom-of-Expression-In-the-Age-of-Artificial-Intelligence-1.pdf.
[72] Purdy, M. und P. Daugherty (2016), “Artificial Intelligence Poised to Double Annual Economic Growth Rate in 12 Developed Economies and Boost Labor Productivity by up to 40 Percent by 2035, According to New Research by Accenture”, Pressemitteilung, Accenture, 28. September, http://www.accenture.com/news/artificial-intelligence-poised-to-double-annual-economic-growth-rate-in-12-developed-economies-and-boost-labor-productivity-by-up-to-40-percent-by-2035-according-to-new-research-by-accenture.htm.
[21] Selbst, A. (2017), “Disparate impact in big data policing”, Georgia Law Review, Vol. 52/109, S. 109-195, http://dx.doi.org/10.2139/ssrn.2819182.
[19] Simonite, T. (2018), “Probing the dark side of Google’s ad-targeting system”, MIT Technology Review, 6. Juli, https://www.technologyreview.com/s/539021/probing-the-dark-side-of-googles-ad-targeting-system/.
[42] Slusallek, P. (2018), Artificial Intelligence and Digital Reality: Do We Need a CERN for AI?, The Forum Network, OECD, Paris, https://www.oecd-forum.org/channels/722-digitalisation/posts/28452-artificial-intelligence-and-digital-reality-do-we-need-a-cern-for-ai.
[4] Smith, M. und S. Neupane (2018), Artificial intelligence and human development: toward a research agenda, International Development Research Centre, Ottawa, https://idl-bnc-idrc.dspacedirect.org/handle/10625/56949.
[80] Stewart, J. (2018), “As Uber Gives up on Self-Driving Trucks, Another Startup Jumps In”, WIRED, 8. Juli, https://www.wired.com/story/kodiak-self-driving-semi-trucks/.
[3] Talbot, D. et al. (2017), “Charting a Roadmap to Ensure Artificial Intelligence (AI) Benefits All” Medium, 30. November, https://medium.com/berkman-klein-center/charting-a-roadmap-to-ensure-artificial-intelligence-ai-benefits-all-e322f23f8b59.
[105] Trajtenberg, M. (2018), “AI as the next GPT: A political-economy perspective”, NBER Working Paper, No. 24245, http://dx.doi.org/10.3386/w24245.
[95] UNI (2018), Die 10 wichtigsten Grundsätze für Arbeitnehmerdatenschutz und -sicherheit, UNI Global Union, http://www.thefutureworldofwork.org/media/35483/uni-global-union_-arbeitnehmerdatenschutz-und-sicherheit.pdf.
[65] Varian, H. (2018), “Artificial intelligence, economics and industrial organization”, NBER Working Paper, Vol. 24839, http://dx.doi.org/10.3386/w24839.
[70] Vereinigtes Königreich (2017), UK Digital Strategy, Government of the United Kingdom, Department for Digital, Culture, Media & Sport, https://www.gov.uk/government/publications/uk-digital-strategy/uk-digital-strategy.
[99] Vereinigtes Königreich (2017), UK Industrial Strategy: A Leading Destination to Invest and Grow, Great Britain & Northern Ireland, Department for Business, Energy & Industrial Strategy, http://htps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/668161/uk-industrial-strategy-international-brochure.pdf.
[85] Vereinigte Staaten (2016), Artificial Intelligence, Automation and the Economy, Executive Office of the President, Government of the United States, https://www.whitehouse.gov/sites/whitehouse.gov/files/images/EMBARGOED%20AI%20Economy%20Report.pdf.
[27] Wachter, S., B. Mittelstadt und C. Russell (2017), “Counterfactual explanations without opening the black box: Automated decisions and the GDPR”, arXiv:1711.00399, https://arxiv.org/pdf/1711.00399.pdf.
[47] Wachter, S., B. Mittelstadt und L. Floridi (2017), “Transparent, explainable and accountable AI for robotics”, Science Robotics,, Vol. 2/6, 31. Mai, http://robotics.sciencemag.org/content/2/6/eaan6080.
[1] Weinberger, D. (2018), “Optimization over explanation – Maximizing the benefits of machine learning without sacrificing its intelligence”, Medium, 28. Januar, https://medium.com/@dweinberger/optimization-over-explanation-maximizing-the-benefits-we-want-from-machine-learning-without-347ccd9f3a66.
[22] Weinberger, D. (2018), “Playing with AI Fairness”, Google PAIR, 17. September, https://pair-code.github.io/what-if-tool/ai-fairness.html.
[86] Winick, E. (2018), “Every study we could find on what automation will do to jobs, in one chart”, MIT Technology Review, 25. Januar, https://www.technologyreview.com/s/610005/every-study-we-could-find-on-what-automation-will-do-to-jobs-in-one-chart/.
[94] Wong, Q. (2017), “At LinkedIn, artificial intelligence is like ‘oxygen’”, Mercury News, 1. Juni, http://www.mercurynews.com/2017/01/06/at-linkedin-artificial-intelligence-is-like-oxygen.
[18] Yona, G. (2017), “A Gentle Introduction to the Discussion on Algorithmic Fairness”, Towards Data Science”, 5. Oktober, https://towardsdatascience.com/a-gentle-introduction-to-the-discussion-on-algorithmic-fairness-740bbb469b6.
[73] Zeng, M. (2018), “Alibaba and the future of business”, Harvard Business Review, September-Oktober, https://hbr.org/2018/09/alibaba-and-the-future-of-business.