[17] Abrams, M. et al. (2017), Artificial Intelligence, Ethics and Enhanced Data Stewardship, The Information Accountability Foundation, Plano, Texas.
[97] Acemoglu, D. et P. Restrepo (2018), Artificial Intelligence, Automation and Work, National Bureau of Economic Research, Cambridge, MA, http://dx.doi.org/10.3386/w24196.
[50] Agrawal, A., J. Gans et A. Goldfarb (2018), « Economic Policy for Artificial Intelligence », National Bureau of Economic Research, Cambridge, MA, 24690, http://dx.doi.org/10.3386/w24690.
[103] Agrawal, A., J. Gans et A. Goldfarb (2018), Prediction Machines: The Simple Economics of Artificial Intelligence, Harvard Business School Press.
[51] Agrawal, G. (dir. pub.) (2018), « Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics », National Bureau of Economic Research, 24001, https://www.nber.org/papers/w24001.
[69] Allemagne (2018), « Key points for a federal government strategy on artificial intelligence », communiqué de presse, 18 juillet, BMWI, https://www.bmwi.de/Redaktion/EN/Pressemitteilungen/2018/20180718-key-points-for-federal-government-strategy-on-artificial-intelligence.html.
[71] Autor, D. et A. Salomons (2018), « Is automation labor-displacing? Productivity growth, employment, and the labor share », document de travail, n° 24871, National Bureau of Economic Research, Cambridge, MA, http://dx.doi.org/10.3386/w24871.
[63] Bajari, P. et al. (2018), « The impact of big data on firm performance: An empirical investigation », document de travail, n° 24334, National Bureau of Economic Research, Cambridge, MA, http://dx.doi.org/10.3386/w24334.
[30] Barocas, S. et A. Selbst (2016), « Big data’s disparate impact », California Law Review, vol. 104, pp. 671-729, http://www.californialawreview.org/wp-content/uploads/2016/06/2Barocas-Selbst.pdf.
[24] Berk, R. et J. Hyatt (2015), « Machine learning forecasts of risk to inform sentencing decisions », Federal Sentencing Reporter, vol. 27/4, pp. 222-228, http://dx.doi.org/10.1525/fsr.2015.27.4.222.
[43] Borges, G. (2017), Liability for Machine-Made Decisions: Gaps and Potential Solutions, presentation at the "AI: Intelligent Machines, Smart Policies" conference, Paris, 26-27 October, http://www.oecd.org/going-digital/ai-intelligent-machines-smart-policies/conference-agenda/ai-intelligent-machines-smart-policies-borges.pdf.
[38] Brundage, M. et al. (2018), The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation, Future of Humanity Institute, University of Oxford, Centre for the Study of Existential Risk, University of Cambridge, Centre for a New American Security, Electronic Frontier Foundation and Open AI, https://arxiv.org/ftp/arxiv/papers/1802/1802.07228.pdf.
[98] Brynjolfsson, E. et T. Mitchell (2017), « What can machine learning do? Workforce implications », Science, vol. 358/6370, pp. 1530-1534, http://dx.doi.org/10.1126/science.aap8062.
[32] Burgess, M. (2016), « Holding AI to account: Will algorithms ever be free of bias if they are created by humans? », WIRED, 11 janvier, https://www.wired.co.uk/article/creating-transparent-ai-algorithms-machine-learning.
[93] Byhovskaya, A. (2018), Overview of the National Strategies on Work 4.0: A Coherent Analysis of the Role of the Social Partners, Comité économique et social européen, Bruxelles, https://www.eesc.europa.eu/sites/default/files/files/qe-02-18-923-en-n.pdf.
[100] Canada (2017), « Le gouvernement du Canada lance la Stratégie en matière de compétences mondiales », communiqué de presse, Immigration, Réfugiés et Citoyenneté Canada, 12 juin, https://www.canada.ca/fr/immigration-refugies-citoyennete/nouvelles/2017/06/le_gouvernement_ducanadalancelastrategieenmatieredecompetencesmo.html.
[10] Cellarius, M. (2017), Artificial Intelligence and the Right to Informational Self-determination, Forum de l’OCDE, OCDE, Paris, https://www.oecd-forum.org/users/75927-mathias-cellarius/posts/28608-artificial-intelligence-and-the-right-to-informational-self-determination.
[46] CESE (2017), L’intelligence artificielle – Les retombées de l’intelligence artificielle pour le marché unique (numérique), la production, la consommation, l’emploi et la société, Comité économique et social européen, Bruxelles, https://webapi2016.eesc.europa.eu/v1/documents/eesc-2016-05369-00-00-ac-tra-fr.docx/content.
[25] Chouldechova, A. (2016), « Fair prediction with disparate impact: A study of bias in recidivism prediction instruments », arXiv, Cornell University, vol. 07524, https://arxiv.org/abs/1610.07524.
[37] Citron, D. et F. Pasquale (2014), « The scored society: Due process for automated predictions », Washington Law Review, vol. 89, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2376209.
[52] Cockburn, I., R. Henderson et S. Stern (2018), « The impact of artificial intelligence on innovation », document de travail, n° 24449, National Bureau of Economic Research, Cambridge, MA, http://dx.doi.org/10.3386/w24449.
[31] Crawford, K. (2016), « Artificial intelligence’s white guy problem », New York Times, 26 June, https://www.nytimes.com/2016/06/26/opinion/sunday/artificial-intelligences-white-guy-problem.html?_r=0.
[74] Daugherty, P. et H. Wilson (2018), Human Machine: Reimagining Work in the Age of AI, Harvard Business Review Press, Cambridge, MA.
[92] Deloitte (2017), HR Technology Disruptions for 2018: Productivity, Design and Intelligence Reign, Deloitte, http://marketing.bersin.com/rs/976-LMP-699/images/HRTechDisruptions2018-Report-100517.pdf.
[104] Deming, D. (2017), « The growing importance of social skills in the labor market », The Quarterly Journal of Economics, vol. 132/4, pp. 1593-1640, http://dx.doi.org/10.1093/qje/qjx022.
[82] Dormehl, L. (2018), « Meet the British whiz kid who fights for justice with robo-lawyer sidekick », Digital Trends 3 mars, https://www.digitaltrends.com/cool-tech/robot-lawyer-free-acess-justice/.
[29] Doshi-Velez, F. et al. (2017), « Accountability of AI under the law: The role of explanation », arXiv, Cornell University, 21 novembre, https://arxiv.org/pdf/1711.01134.pdf.
[61] Dowlin, N. (2016), CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy, Microsoft Research, https://www.microsoft.com/en-us/research/wp-content/uploads/2016/04/CryptonetsTechReport.pdf.
[34] Dressel, J. et H. Farid (2018), « The accuracy, fairness and limits of predicting recidivism », Science Advances, vol. 4/1, http://advances.sciencemag.org/content/4/1/eaao5580.
[79] Elliott, S. (2017), Computers and the Future of Skill Demand, La recherche et l’innovation dans l’enseignement, Éditions OCDE, Paris, https://dx.doi.org/10.1787/9789264284395-en.
[85] EOP (2016), Artificial Intelligence, Automation and the Economy, Executive Office of the President, Gouvernement des États-Unis, https://www.whitehouse.gov/sites/whitehouse.gov/files/images/EMBARGOED AI Economy Report.pdf.
[101] Finlande (2017), Finland’s Age of Artificial Intelligence - Turning Finland into a Leader in the Application of AI, page web, Ministère finlandais de l’Emploi et de l’Économie, https://tem.fi/en/artificial-intelligence-programme.
[81] FIT (2017), « Driverless trucks: New report maps out global action on driver jobs and legal issues », International Transport Forum, https://www.itf-oecd.org/driverless-trucks-new-report-maps-out-global-action-driver-jobs-and-legal-issues.
[16] Flanagan, M., D. Howe et H. Nissenbaum (2008), « Embodying values in technology: Theory and practice », dans van den Hoven, J. et J. Weckert (dir. pub.), Information Technology and Moral Philosophy, Cambridge University Press, Cambridge, http://dx.doi.org/10.1017/cbo9780511498725.017.
[41] Freeman, R. (2017), Evolution or Revolution? The Future of Regulation and Liability for AI, presentation at the "AI: Intelligent Machines, Smart Policies" conference, Paris, 26-27 October, http://www.oecd.org/going-digital/ai-intelligent-machines-smart-policies/conference-agenda/ai-intelligent-machines-smart-policies-freeman.pdf.
[83] Frey, C. et M. Osborne (2017), « The future of employment: How susceptible are jobs to computerisation? », Technological Forecasting and Social Change, vol. 114, pp. 254-280, http://dx.doi.org/10.1016/j.techfore.2016.08.019.
[88] Gartner (2017), « Gartner says by 2020, artificial intelligence will create more jobs than it eliminates », Gartner, communiqué de presse, 13 décembre, https://www.gartner.com/en/newsroom/press-releases/2017-12-13-gartner-says-by-2020-artificial-intelligence-will-create-more-jobs-than-it-eliminates.
[44] Golson, J. (2016), « Google’s self-driving cars rack up 3 million simulated miles every day », The Verge, 1 février, https://www.theverge.com/2016/2/1/10892020/google-self-driving-simulator-3-million-miles.
[39] Goodfellow, I., J. Shlens et C. Szegedy (2015), « Explaining and harnessing adversarial examples », arXiv, vol. 1412.6572, Cornell University, https://arxiv.org/pdf/1412.6572.pdf.
[78] Goos, M., A. Manning et A. Salomons (2014), « Explaining job polarization: Routine-biased technological change and offshoring », American Economic Review, vol. 104/8, pp. 2509-2526, http://dx.doi.org/10.1257/aer.104.8.2509.
[76] Graetz, G. et G. Michaels (2018), « Robots at work », Review of Economics and Statistics, vol. 100/5, pp. 753-768, http://dx.doi.org/10.1162/rest_a_00754.
[15] Harkous, H. (2018), « Polisis: Automated analysis and presentation of privacy policies using deep learning », arXiv, Cornell University, 29 juin, https://arxiv.org/pdf/1802.02561.pdf.
[7] HCDH (2011), Principes directeurs des Nations Unies relatifs aux entreprises et aux droits de l’homme, Haut-Commissariat des Nations Unies aux droits de l’homme, https://www.ohchr.org/documents/publications/guidingprinciplesbusinesshr_fr.pdf.
[6] Heiner, D. et C. Nguyen (2018), « Amplify Human Ingenuity with Intelligent Technology », Shaping human-centered artificial intellilgence, A.Ideas Series, Réseau du Forum, OCDE, Paris, https://www.oecd-forum.org/users/86008-david-heiner-and-carolyn-nguyen/posts/30653-shaping-human-centered-artificial-intelligence.
[9] Heiner, D. et C. Nguyen (2018), « Amplify Human Ingenuity with Intelligent Technology », Shaping Human-Centered Artificial Intelligence, A.Ideas Series, The Forum Network, OCDE, Paris, https://www.oecd-forum.org/users/86008-david-heiner-and-carolyn-nguyen/posts/30653-shaping-human-centered-artificial-intelligence.
[47] Helgason, S. (1997), Vers un principe de responsabilité fondée sur la performance : éléments de discussion, Service de la gestion publique, Éditions OCDE, Paris, http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=PUMA/PAC(97)8&docLanguage=Fr.
[42] Ingels, H. (2017), Artificial Intelligence and EU Product Liability Law, presentation at the "AI: Intelligent Machines, Smart Policies" conference, Paris, 26-27 October, http://www.oecd.org/going-digital/ai-intelligent-machines-smart-policies/conference-agenda/ai-intelligent-machines-smart-policies-ingels.pdf.
[59] Jain, S. (2017), « NanoNets : How to use deep learning when you have limited data, Part 2 : Building object detection models with almost no hardware », Medium 30 janvier, https://medium.com/nanonets/nanonets-how-to-use-deep-learning-when-you-have-limited-data-f68c0b512cab.
[91] Kasparov, G. (2018), Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins, Public Affairs, New York.
[60] Kendall, A. (23 mai 2017), « Deep learning is not good enough, we need Bayesian deep learning for safe AI », Alex Kendall Blog, https://alexgkendall.com/computer_vision/bayesian_deep_learning_for_safe_ai/.
[33] Knight, W. (2017), « The financial world wants to open AI’s black boxes », MIT Technology Review, 13 April, https://www.technologyreview.com/s/604122/the-financial-world-wants-to-open-ais-black-boxes/.
[27] Kosack, S. et A. Fung (2014), « Does transparency improve governance? », Annual Review of Political Science, vol. 17, pp. 65-87, https://www.annualreviews.org/doi/pdf/10.1146/annurev-polisci-032210-144356.
[2] Kosinski, M., D. Stillwell et T. Graepel (2013), « Private traits and attributes are predictable from digital records of human behavior », PNAS, 11 mars, http://www.pnas.org/content/pnas/early/2013/03/06/1218772110.full.pdf.
[40] Kurakin, A., I. Goodfellow et S. Bengio (2017), « Adversarial examples in the physical world, », arXiv, Cornell University 02533, https://arxiv.org/abs/1607.02533.
[75] Lakhani, P. et B. Sundaram (2017), « Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks », Radiology, vol. 284/2, pp. 574-582, http://dx.doi.org/10.1148/radiol.2017162326.
[107] Matheson, R. (2018), Artificial intelligence model “learns” from patient data to make cancer treatment less toxic, MIT News, 9 août 2018, http://news.mit.edu/2018/artificial-intelligence-model-learns-patient-data-cancer-treatment-less-toxic-0810.
[87] MGI (2017), Jobs Lost, Jobs Gained: Workforce Transitions in a Time of Automation, McKinsey Global Institute, New York.
[77] Michaels, G., A. Natraj et J. Van Reenen (2014), « Has ICT polarized skill demand? Evidence from eleven countries over twenty-five years », Review of Economics and Statistics, vol. 96/1, pp. 60-77, http://dx.doi.org/10.1162/rest_a_00366.
[84] Mims, C. (2010), « AI that picks stocks better than the pros », MIT Technology Review, 10 June, https://www.technologyreview.com/s/419341/ai-that-picks-stocks-better-than-the-pros/.
[102] MIT (2018), « Cybersecurity’s insidious new threat: Workforce stress », MIT Technology Review, 7 August, https://www.technologyreview.com/s/611727/cybersecuritys-insidious-new-threat-workforce-stress/.
[57] Mousave, S., M. Schukat et E. Howley (2018), « Deep reinforcement learning: An overview », arXiv, 1806.08894, https://arxiv.org/abs/1806.08894.
[18] Narayanan, A. (2018), « Tutorial: 21 fairness definitions and their politics », https://www.youtube.com/watch?v=jIXIuYdnyyk.
[89] Nedelkoska, L. et G. Quintini (2018), « Automation, skills use and training », Documents de travail de l’OCDE sur les questions sociales, l’emploi et les migrations, n° 202, Éditions OCDE, Paris, https://dx.doi.org/10.1787/2e2f4eea-en.
[56] Neppel, C. (2017), AI: Intelligent Machines, Smart Policies, exposé présenté à la conférence AI: Intelligent Machines, Smart Policies, Paris, les 26-27 octobre 2007, http://oe.cd/ai2017.
[5] NITI (2018), National Strategy for Artificial Intelligence #AIforall, NITI Aayog, juin 2018, http://niti.gov.in/writereaddata/files/document_publication/NationalStrategy-for-AI-Discussion-Paper.pdf.
[55] OCDE (2019), Enhanced Access to Data and Sharing of Data (EASD), Groupe de travail sur la sécurité et la vie privée dans l’économie numérique , DSTI/CDEP/SPDE(2017)13/REV3.
[62] OCDE (2019), Going Digital: Shaping Policies, Improving Lives, Éditions OCDE, Paris, https://dx.doi.org/10.1787/9789264312012-en.
[36] OCDE (2019), Recommandation du Conseil sur l’intelligence artificielle, OCDE, Paris, https://legalinstruments.oecd.org/api/print?ids=648&lang=fr.
[35] OCDE (2019), Scoping Principles to Foster Trust in and Adoption of AI – Proposal by the Expert Group on Artificial Intelligence at the OECD (AIGO), Éditions OCDE, Paris, http://oe.cd/ai.
[14] OCDE (2018), « AI: Intelligent machines, smart policies: Conference summary », Documents de travail de l’OCDE sur l’économie numérique, n° 270, Éditions OCDE, Paris, https://dx.doi.org/10.1787/f1a650d9-en.
[49] OCDE (2018), « Approaches to market openness in the digital age », dans « Perspectives on innovation policies in the digital age », dans OECD Science, Technology and Innovation Outlook 2018 : Adapting to Technological and Societal Disruption, Éditions OCDE, Paris, https://dx.doi.org/10.1787/sti_in_outlook-2018-8-en.
[90] OCDE (2018), Job Creation and Local Economic Development 2018: Preparing for the Future of Work, Éditions OCDE, Paris, https://dx.doi.org/10.1787/9789264305342-en.
[68] OCDE (2018), La prochaine révolution de la production : Conséquences pour les pouvoirs publics et les entreprises, Éditions OCDE, Paris, https://dx.doi.org/10.1787/9789264280793-fr.
[21] OCDE (2018), Perspectives de l’économie numérique de l’OCDE 2017, Éditions OCDE, Paris, https://dx.doi.org/10.1787/9789264282483-fr.
[53] OCDE (2018), Science, technologie et innovation : Perspectives de l’OCDE 2018 (version abrégée) : S’adapter aux bouleversements technologiques et sociétaux, Éditions OCDE, Paris, https://dx.doi.org/10.1787/sti_in_outlook-2018-fr.
[66] OCDE (2017), Algorithms and Collusion: Competition Policy in the Digital Age, Éditions OCDE, Paris, https://www.oecd.org/fr/concurrence/algorithms-collusion-competition-policy-in-the-digital-age.htm.
[96] OCDE (2017), Getting Skills Right: Skills for Jobs Indicators, Getting Skills Right, Éditions OCDE, Paris, https://dx.doi.org/10.1787/9789264277878-en.
[64] OCDE (2016), Données massives : Adapter la politique de la concurrence à l’ère du numérique (Synthèse), Comité de la concurrence, https://one.oecd.org/document/DAF/COMP/M(2016)2/ANN4/FINAL/fr/pdf.
[13] OCDE (2013), Recommandation du Conseil concernant les Lignes directrices régissant la protection de la vie privée et les flux transfrontières de données de caractère personnel, OCDE, Paris, https://www.oecd.org/fr/internet/ieconomie/lignesdirectricesregissantlaprotectiondelaviepriveeetlesfluxtransfrontieresdedonneesdecaracterepersonnel.htm.
[8] OCDE (2011), Les principes directeurs de l’OCDE à l’intention des entreprises multinationales, Editions OCDE, Paris, https://doi.org/10.1787/9789264115439-fr.
[67] OEB (2018), Patenting Artificial Intelligence - Conference summary, Office européen des brevets, Munich, 30 mai, http://documents.epo.org/projects/babylon/acad.nsf/0/D9F20464038C0753C125829E0031B814/$FILE/summary_conference_artificial_intelligence_en.pdf.
[12] Office of the Victorian Information Commissioner (2018), « Artificial intelligence and privacy », Issues Paper, juin, Office of the Victorian Information Commissioner, https://ovic.vic.gov.au/wp-content/uploads/2018/08/AI-Issues-Paper-V1.1.pdf.
[26] O’Neil, C. (2016), Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, Broadway Books.
[54] OpenAI (16 mai 2018), « AI and compute », OpenAI blog, San Francisco, https://blog.openai.com/ai-and-compute/.
[58] Pan, S. et Q. Yang (2010), « A survey on transfer learning », IEEE Transactions on Knowledge and Data Engineering, vol. 22/10, pp. 1345-1359.
[106] Patki, N., R. Wedge et K. Veeramachaneni (2016), « The Synthetic Data Vault », 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), http://dx.doi.org/10.1109/dsaa.2016.49.
[11] Privacy International et Article 19 (2018), Privacy and Freedom of Expression in the Age of Artificial Intelligence, https://www.article19.org/wp-content/uploads/2018/04/Privacy-and-Freedom-of-Expression-In-the-Age-of-Artificial-Intelligence-1.pdf.
[72] Purdy, M. et P. Daugherty (2016), « Artificial intelligence poised to double annual economic growth rate in 12 developed economies and boost labor productivity by up to 40 percent by 2035, according to new research by Accenture », Accenture, Press Release, 28 septembre, http://www.accenture.com/futureofAI.
[70] RU (2017), UK Digital Strategy, Gouvernement du Royaume-Uni, https://www.gov.uk/government/publications/uk-digital-strategy.
[99] RU (2017), UK Industrial Strategy: A Leading Destination to Invest and Grow, Royaume-Uni et Irlande du Nord, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/668161/the_labour_market_story-_skills_use_at_work.pdf.
[22] Selbst, A. (2017), « Disparate impact in big data policing », Georgia Law Review, vol. 52/109, http://dx.doi.org/10.2139/ssrn.2819182.
[20] Simonite, T. (2018), « Probing the dark side of Google’s ad-targeting system », MIT Technology Review, 6 July, https://www.technologyreview.com/s/539021/probing-the-dark-side-of-googles-ad-targeting-system/.
[45] Slusallek, P. (2018), Artificial Intelligence and Digital Reality: Do We Need a CERN for AI?, The Forum Network, OCDE, Paris, https://www.oecd-forum.org/channels/722-digitalisation/posts/28452-artificial-intelligence-and-digital-reality-do-we-need-a-cern-for-ai.
[4] Smith, M. et S. Neupane (2018), Artificial Intelligence and Human Development: Toward a Research Agenda, Centre de recherches pour le développement international, Ottawa, https://idl-bnc-idrc.dspacedirect.org/handle/10625/56949.
[80] Stewart, J. (2018), « As Uber gives up on self-driving trucks, another startup jumps in », WIRED, 8 July, https://www.wired.com/story/kodiak-self-driving-semi-trucks/.
[3] Talbot, D. et al. (2017), « Charting a roadmap to ensure AI benefits all », Medium, 30 November, https://medium.com/berkman-klein-center/charting-a-roadmap-to-ensure-artificial-intelligence-ai-benefits-all-e322f23f8b59.
[105] Trajtenberg, M. (2018), « AI as the next GPT: A political-economy perspective », National Bureau of Economic Research, vol. 24245, Cambridge, MA, http://dx.doi.org/10.3386/w24245.
[95] UNI (2018), 10 Principles for Workers’ Data Rights and Privacy, UNI Global Union, http://www.thefutureworldofwork.org/docs/10-principles-for-workers-data-rights-and-privacy/.
[65] Varian, H. (2018), « Artificial intelligence, economics and industrial organization », n° 24839, National Bureau of Economic Research, Cambridge, MA, http://dx.doi.org/10.3386/w24839.
[48] Wachter, S., B. Mittelstadt et L. Floridi (2017), « Transparent, explainable and accountable AI for robotics », Science Robotics, 31 May, http://robotics.sciencemag.org/content/2/6/eaan6080.
[28] Wachter, S., B. Mittelstadt et C. Russell (2017), « Counterfactual explanations without opening the black box: Automated decisions and the GDPR », arXiv, Cornell University, 00399, https://arxiv.org/pdf/1711.00399.pdf.
[1] Weinberger, D. (2018), « Optimization over explanation - Maximizing the benefits of machine learning without sacrificing its intelligence », Medium, 28 January, https://medium.com/@dweinberger/optimization-over-explanation-maximizing-the-benefits-we-want-from-machine-learning-without-347ccd9f3a66.
[23] Weinberger, D. (2018), Playing with AI Fairness, Google PAIR, 17 septembre, https://pair-code.github.io/what-if-tool/ai-fairness.html.
[86] Winick, E. (2018), « Every study we could find on what automation will do to jobs, in one chart », MIT Technology Review, 25 January, https://www.technologyreview.com/s/610005/every-study-we-could-find-on-what-automation-will-do-to-jobs-in-one-chart/.
[94] Wong, Q. (2017), « “At LinkedIn, artificial intelligence is like “oxygen”” », Mercury News, 1 June, http://www.mercurynews.com/2017/01/06/at-linkedin-artificial-intelligence-is-like-oxygen.
[19] Yona, G. (2017), « A gentle introduction to the discussion on algorithmic fairness », Toward Data Science, 5 October, https://towardsdatascience.com/a-gentle-introduction-to-the-discussion-on-algorithmic-fairness-740bbb469b6.
[73] Zeng, M. (2018), Alibaba and the Future of Business, Harvard Business Review, septembre-octobre 2018, https://hbr.org/2018/09/alibaba-and-the-future-of-business.