The actual performance of broadband connections, (i.e. broadband quality), is critical to meeting consumers’, policy makers’, and regulators’ various objectives. Broadband performance is a fundamental metric for consumers to make informed choices, as it reflects the quality of their experience and enables them to assess any differences between advertised speeds and actual speeds. For policy-makers and regulators, being able to assess broadband performance is essential to ensuring the accessibility of online services and to ascertaining whether services are meeting their goals for overall market development (e.g. competitiveness, coverage). In 2012, the OECD was tasked with assessing available datasets that provide robust data offering like-for-like comparisons over time, and with working towards a long-term goal of co-ordinated measurement of speed and other service qualities (OECD, 2012).
One key aspect of connection quality is download and upload speed. Measures can refer to advertised speeds (describing the theoretical maximum speed that can be expected) or the actual experienced speed. While widespread penetration of broadband is observed in OECD countries, there is a vast difference in the speeds available to users and hence the applications from which they can benefit. To reflect these differences, the OECD broadband portal, (https://oe.cd/broadband), provides a breakdown of fixed broadband subscriptions by speed tiers, ranging from subscriptions with speeds as low as 256 Kbps to over 100 Mbps. However, these are advertised speeds and not actual experienced speeds, which can be significantly lower.
In addition to broadband speeds, other quality factors such as latency or data packet loss have become increasingly important. Latency – the round-trip time for information between two devices on the network – is key for many advanced applications such as Virtual Reality and Augmented Reality, remote robotics, fully automated vehicles, and haptic technologies (present in remote surgery and industrial IoT applications). These require ultra-reliable broadband. In this respect, the fifth generation (5G) of broadband wireless networks, and increasing deployment of fixed backhaul (e.g. fibre) necessary for both mobile and fixed networks will help to meet these increasing demands. Another quality measure, data packet loss, is more common in wireless networks and can significantly affect their reliability, and hence critical services that need to be delivered error-free and in real-time, such as remote surgery or air-traffic monitoring. These factors, in addition to security considerations and the robustness of networks in the event of disasters, affect the ways in which digital services can be accessed, used, and in turn, the value generated for businesses and consumers. They should therefore be included in a rounded assessment of broadband quality.
One example of a co-ordinated quality assessment of communication networks comes from the National Information Society Agency (NIA) in Korea. The assessment focuses primarily on coverage and speed, including speeds experienced in challenging environments such as in costal or mountain areas and on sea routes. It also incorporates multiple perspectives, including official testing by regulators, self-evaluation by operators, quality evaluations by users.