Businesses have long been using data, but in recent years both the scale of data usage and its central importance for many business models has increased exponentially. “Data-enhanced businesses” augment their existing business models and processes with new, data-driven processes to enhance their production, distribution or marketing, while for “data-enabled businesses”, such as online platforms, data are a key enabler of their core business model. Data also help businesses to co-ordinate better within and across global value chains, facilitate international transactions and can enable new or improved products and services. The value of data to businesses will depend on how and where in the business value chain they are put to use. Since data flows are likely to differ vastly across firms and sectors, there is a need to decompose and analyse data business models and value chains in detail, considering factors such as the types of data involved, their origin, the way they are used and institutional context (e.g. within an MNE or not). For example, Li et al. (2018) have analysed the nature and role of data in various online platform businesses.
There is not yet a consensus on the best way to measure and value different types of data and data inputs in the production process. The challenges of doing so are further exacerbated by the international nature of many business models, which entail related cross-border data flows. Without proper measurement and valuation, it also becomes difficult to assess the role data plays in terms of firm performance or product market structures. These measurement problems arise at the company, industry and country levels. They hamper the accuracy of national statistics and, in consequence, the development of effective and well-targeted policies aimed at fostering growth in the digital era.