Ce chapitre décrit les caractéristiques économiques de l’intelligence artificielle (IA), qui s’impose comme une technologie émergente à visée générique ouvrant la voie à une diminution du coût des prévisions et une optimisation de la prise de décisions. L’IA, qui offre un moyen de produire des prévisions, des recommandations ou des décisions plus fiables à moindre coût, promet de générer des gains de productivité, d’améliorer le bien-être et d’aider à relever des défis complexes. Le rythme d’adoption de l’IA varie selon les entreprises et les secteurs, puisque son exploitation exige de réaliser des investissements complémentaires dans les données, les compétences et la transformation numérique des flux de travail, et d’être à même d’adapter les processus organisationnels. De plus, l’IA est un domaine porteur en termes d’investissements et de développement des entreprises. Le capital-investissement dans des startups spécialisées dans l’IA s’est en effet accéléré à compter de 2016 – il a même doublé entre 2016 et 2017, pour atteindre 16 milliards USD en 2017. Les startups spécialisées dans l’IA ont attiré 12 % du capital-investissement mondial au cours du premier semestre de 2018, en nette progression par rapport à 2011 où elles ne représentaient que 3 %. Les investissements dans les technologies liées à l’IA devraient continuer d’augmenter à mesure qu’elles gagnent en maturité.
L’intelligence artificielle dans la société
2. Paysage économique de l’IA
Abstract
Les données statistiques concernant Israël sont fournies par et sous la responsabilité des autorités israéliennes compétentes. L’utilisation de ces données par l’OCDE est sans préjudice du statut des hauteurs du Golan, de Jérusalem-Est et des colonies de peuplement israéliennes en Cisjordanie aux termes du droit international.
Caractéristiques économiques de l’intelligence artificielle
L’intelligence artificielle facilite la production de prévisions
Du point de vue économique, les progrès récents de l’intelligence artificielle (IA) entraînent soit une réduction du coût des prévisions, soit une amélioration de leur qualité moyennant un coût stable. De nombreux aspects de la prise de décisions sont certes indépendants des prévisions. Pour autant, le recours à l’IA pour produire des prévisions de meilleure qualité, à moindre coût et largement accessibles pourrait avoir des effets transformateurs puisque les prévisions sont à la base d’une kyrielle d’activités humaines.
Alors que l’IA rend les prévisions moins onéreuses à produire, leurs usages se multiplient, comme ce fut le cas jadis avec les ordinateurs. Les premières applications de l’IA ont longtemps été reconnues comme étant dédiées aux problèmes de prévision – à l’image des techniques d’apprentissage automatique, qui permettent de prévoir les risques d’insolvabilité et d’assurance. À mesure que les coûts diminuent, certaines activités humaines s’apparentent de plus en plus à des exercices de prévision. C’est ainsi que pour établir un diagnostic médical, le médecin utilise désormais les données sur les symptômes du patient et apporte les informations manquantes sur leur cause. Le processus qui consiste à utiliser des données pour fournir des informations manquantes relève de la prévision. La classification des objets est également une question de prévision : les yeux d’une personne reçoivent les données sous forme de signaux lumineux et le cerveau complète l’information manquante en leur associant un libellé.
L’IA, en ouvrant la voie à l’établissement de prévisions à moindre coût, offre un nombre incalculable d’applications, les prévisions étant une composante essentielle du processus décisionnel. En d’autres termes, les prévisions facilitent la prise de décisions, qui est présente dans tous les domaines. Ainsi, les responsables sont appelés à prendre des décisions cruciales en termes de recrutement, d’investissement et de stratégie, et d’autres, plus triviales, sur les réunions auxquelles ils doivent assister et le rôle qu’ils doivent y jouer. Les juges prennent des décisions importantes quant à la culpabilité ou l’innocence de prévenus, aux procédures et aux peines à prononcer, et d’autres, qui le sont beaucoup moins, sur un paragraphe ou une requête spécifique. Enfin, les individus prennent en permanence des décisions – du menu du dîner à une demande en mariage, en passant par la musique qu’ils souhaitent écouter. L’enjeu phare de la prise de décisions tient à la gestion de l’incertitude. Dans la mesure où la prévision réduit l’incertitude, elle nourrit toutes ces décisions et peut ainsi ouvrir le champ des possibles.
La prévision générée par la machine est un substitut de la prévision humaine
Autre notion d’ordre économique : la substitution. Lorsque le prix d’un produit de base (à l’instar du café) chute, non seulement les individus en achètent davantage, mais ils délaissent également les produits de substitution (comme le thé). De la même façon, si les machines sont capables d’établir des prévisions à moindre coût, elles se substitueront à l’homme pour l’exécution de ce type de tâches. La réduction de la main-d’œuvre dans ce domaine deviendra dès lors une conséquence majeure de l’IA sur le travail humain.
Tout comme l’avènement des ordinateurs signifie qu’aujourd’hui, rares sont les travailleurs qui exécutent des opérations arithmétiques dans le cadre professionnel, l’IA aura le même effet sur les tâches de prévision. Par exemple, la transcription – à savoir la conversion d’un discours oral en texte – s’apparente à de la prévision en ce qu’elle consiste à trouver les informations manquantes sur les symboles écrits correspondant aux paroles prononcées. L’IA donne d’ores et déjà des résultats plus rapides et plus fiables que de nombreuses personnes dont le travail implique des tâches de transcription.
Données, actions et jugement complètent les prévisions des machines
Lorsque le prix d’un produit de base (le café) diminue, les individus tendent à acheter en plus grande quantité les produits complémentaires (le lait et le sucre, par exemple). L’identification des « produits complémentaires » de la prévision constitue par conséquent un enjeu de taille compte tenu des progrès récents de l’IA. Si la prévision est une composante essentielle de la prise de décisions, elle ne fait pas tout. Les autres aspects d’une décision sont des compléments de l’IA, qu’il s’agisse des données, des actions ou du jugement.
Les données désignent l’information qui vient alimenter une prévision. Nombre des avancées récentes de l’IA dépendent de volumes considérables de données numériques dont les systèmes d’IA ont besoin pour établir des prévisions à partir d’exemples passés. En règle générale, plus ces exemples sont nombreux, plus les prévisions sont fiables. Par conséquent, grâce à l’IA, l’actif que représente l’accès à de vastes quantités de données renferme davantage de valeur pour les organisations. La valeur stratégique des données s’avère toutefois difficile à appréhender, puisqu’elle dépend de deux types de considérations : dans quelle mesure les données vont-elles aider une organisation à prévoir des éléments qui lui sont importants, et l’organisation a-t-elle à sa disposition uniquement des données rétrospectives ou est-elle en mesure de les enrichir avec des données collectées au fil du temps ? L’aptitude à poursuivre l’apprentissage grâce à de nouvelles données peut dès lors être une source d’avantage concurrentiel durable (Agrawal, Gans et Goldfarb, 2018[1]).
Des tâches nouvelles peuvent être menées à bien grâce aux autres éléments de décision : les actions et le jugement. Certaines actions revêtent par nature davantage de valeur lorsqu’elles sont exécutées par des humains plutôt que par une machine (qu’il s’agisse d’athlètes de haut niveau, de professionnels de la petite enfance, ou de commerciaux et vendeurs). Néanmoins, l’aspect le plus important reste probablement le jugement, à savoir le processus de détermination de l’intérêt d’une action particulière dans un environnement donné. Lorsque l’on recourt à l’IA pour établir des prévisions, un humain doit décider de ce que l’on va prévoir et de l’usage qui en sera fait.
La mise en œuvre de l’IA dans les organisations nécessite de réaliser des investissements complémentaires et d’adapter les processus
Tout comme l’informatique, l’électricité ou les moteurs à vapeur, l’IA peut être considérée comme une technologie générique (Bresnahan et Trajtenberg, 1992[2] ; Brynjolfsson, Rock et Syverson, 2017[3]). Ce qui signifie qu’elle est à même de conduire à des gains de productivité notables dans un éventail plus large de secteurs. Dans le même temps, son déploiement nécessite des investissements dans un certain nombre de facteurs complémentaires – et peut amener les organisations à repenser leur stratégie globale.
Pour que le recours à l’IA soit synonyme de gains de productivité significatifs, les organisations doivent réaliser des investissements complémentaires. Ceux-ci portent sur l’infrastructure de collecte de données en continu, le recrutement de spécialistes capables d’exploiter les données, ou encore l’adaptation des processus afin de mettre à profit les nouvelles possibilités offertes par la réduction de l’incertitude.
Chaque organisation dispose de nombreux processus dont le but est plus de tirer le meilleur parti de situations données face à l’incertitude, que d’offrir le meilleur service possible aux clients. Les salles d’attente des aéroports, par exemple, offrent aux passagers un espace confortable où patienter avant le départ de leur avion. Or si les passagers disposaient de prévisions fiables sur la durée du trajet jusqu’à l’aéroport et le temps nécessaire aux contrôles de sécurité, ils n’auraient peut-être plus besoin de ces salles d’attente.
Le champ des opportunités qu’offriraient de meilleures prévisions devrait varier selon les entreprises et les secteurs. Google, Baidu et d’autres entreprises exploitant de vastes plateformes électroniques sont bien placées pour tirer avantage d’investissements de grande ampleur dans l’IA. Du côté de l’offre, ils disposent d’ores et déjà de systèmes pour la collecte des données. Pour ce qui est de la demande, ils commencent à se constituer une clientèle suffisante pour justifier les coûts fixes élevés des investissements dans l’IA. Pour autant, nombreuses sont les entreprises qui n’ont pas intégralement informatisé leurs flux de travail et ne sont pas encore en mesure d’appliquer directement les outils d’IA à leurs processus existants. Toutefois, avec la diminution des coûts, elles prendront peu à peu conscience des opportunités que peut leur conférer la réduction de l’incertitude. Motivées par la quête de solutions pour satisfaire leurs besoins, elles suivront les traces des entreprises pionnières et investiront dans l’IA.
Capital-investissement dans les startups spécialisées dans l’IA
Les investissements dans l’IA progressent à un rythme soutenu, de sorte que l’IA produit d’ores et déjà des effets notables sur les entreprises. MGI (2017[4]) estime ainsi qu’en 2016, 26 à 39 milliards USD ont été investis dans l’IA à l’échelle mondiale. Environ 70 % de ces investissements étaient réalisés en interne ; 20 % environ correspondaient à des investissements dans des startups spécialisées dans l’IA, et autour de 10 % à des acquisitions d’entreprises d’IA (Dilda, 2017[5]). Les trois quarts de ces investissements sont le fait des grandes entreprises de technologie.
En dehors du secteur des technologies, l’adoption de l’IA n’en est qu’à ses prémices et rares sont les entreprises qui ont déployé des solutions d’IA à grande échelle. Les acteurs majeurs des autres secteurs affichant une maturité numérique avancée et disposant de données à exploiter, à l’image de la finance et de l’automobile, se tournent eux aussi peu à peu vers l’IA.
Les géants des technologies multiplient les acquisitions de startups spécialisées dans l’IA. Selon CBI (2018[6]), Google, Apple, Baidu, Facebook, Amazon, Intel, Microsoft, Twitter et Salesforce sont les entreprises qui ont réalisé le plus d’acquisitions de ce type depuis 2010. Par ailleurs, plusieurs startups spécialisées dans l’IA appliquée à la cybersécurité ont été rachetées en 2017 et début 2018. Tel est le cas de Sqrrl et de Zenedge, acquises respectivement par Amazon et Oracle.
Les startups spécialisées dans l’IA sont également une cible privilégiée pour les entreprises opérant dans des secteurs plus traditionnels, comme l’automobile, la santé – avec par exemple Roche Holding ou Athena Health –, l’assurance et la vente au détail.
Après cinq années de croissance ininterrompue, le capital-investissement dans des startups spécialisées dans l’IA s’est accéléré à compter de 2016. Le volume des investissements a même doublé entre 2016 et 2017 (Graphique 2.1). On estime que plus de 50 milliards USD ont été investis dans ce type de startups entre 2011 et mi-2018 (Encadré 2.1).
Encadré 2.1. Note méthodologique
On expose dans cette section des estimations du capital investi dans des startups spécialisées dans l’IA, d’après les données de la plateforme Crunchbase (version de juillet 2018). Créée en 2007, Crunchbase est une base de données commerciales sur des entreprises innovantes ; elle contient des informations sur plus de 500 000 entités implantées dans 199 pays. Breschi, Lassébie et Menon (2018[7]) proposent une analyse comparative de Crunchbase et d’autres sources de données agrégées. Ils observent des schémas concordants pour un large éventail de pays, notamment la plupart des membres de l’OCDE (à l’exception du Japon et de la Corée). On retrouve également des schémas homogènes en Afrique du Sud, au Brésil, en Fédération de Russie, en Inde et en République populaire de Chine (ci-après dénommée la « Chine »). Crunchbase classe les entreprises dans un ou plusieurs domaine(s) technologique(s) pris dans une liste de 45 groupes.
Il convient toutefois de rester prudent lorsque l’on utilise Crunchbase et ce, pour des questions liées au champ extrêmement large de la base de données, à la fiabilité des informations autodéclarées et à la sélection de l’échantillon. En particulier, l’enregistrement des nouvelles opérations dans la base de données peut prendre du temps et les délais peuvent varier selon les pays. En outre, il se peut que les startups aient tendance à s’autodéclarer en tant que startups spécialisées dans l’IA du fait de l’intérêt croissant des investisseurs pour cette catégorie.
Aux fins de la présente étude, les « startups spécialisées dans l’IA » correspondent aux entreprises fondées après 2000, référencées dans le domaine technologique « artificial intelligence » (intelligence artificielle) de la base Crunchbase (soit 2 436 entreprises). Elles englobent également les entreprises ayant indiqué des mots-clés liés à l’IA dans la description courte de leurs activités (ce qui représente 689 entreprises supplémentaires). Trois types de mots-clés sont considérés comme étant liés à l’IA : premièrement, les mots-clés génériques de l’IA, à savoir « artificial intelligence » (intelligence artificielle), « AI » (IA), « machine learning » (apprentissage automatique) et « machine intelligence » (intelligence des machines) ; deuxièmement, les mots-clés liés aux techniques d’IA, tels « neural network » (réseau neuronal), « deep learning » (apprentissage profond) et « reinforcement learning » (apprentissage par renforcement). Enfin, le troisième type a trait aux champs d’application de l’IA ; on y retrouve des mots-clés comme « computer vision » (vision par ordinateur), « predictive analytics » (analyse prédictive), « natural language processing » (traitement du langage naturel), « autonomous vehicles » (véhicule autonome), « intelligent system » (système intelligent) et « virtual assistant » (assistant virtuel).
Plus d’un quart (26 %) des opérations d’investissement dans des startups spécialisées dans l’IA référencées dans la base de données ne font pas état des investissements des apporteurs de capital-risque. Aux fins de la présente analyse, on a estimé les montants de ces opérations sur la base de la valeur moyenne des opérations de plus petite envergure (en tenant compte uniquement des opérations de moins de 10 millions USD) pour la même période et dans le même pays. La raison pour laquelle les opérations plus importantes sont exclues tient au fait que les montants correspondants sont généralement des informations publiques. La valeur des opérations non divulguées au public est estimée à environ 6 % de la valeur totale des investissements réalisés entre 2011 et mi-2018, un taux qui pourrait toutefois être sous-évalué. Les chiffres du premier semestre de 2018 sont partiels, les opérations n’étant pas déclarées immédiatement.
L’IA représente aujourd’hui plus de 12 % du capital-investissement dans les startups
Les startups spécialisées dans l’IA ont attiré environ 12 % de l’ensemble du capital-investissement mondial au cours du premier semestre de 2018, en nette progression par rapport à 2011, où elles représentaient seulement 3 % (Graphique 2.2). La part des investissements dans les startups spécialisées dans l’IA a augmenté dans tous les pays analysés. Au premier semestre de 2018, quelque 13 % des investissements dans des startups aux États-Unis et en Chine visaient des entreprises spécialisées dans l’IA. Surtout, Israël a vu la part des investissements dans ce type d’entreprises bondir de 5 % à 25 % entre 2011 et le premier semestre de 2018 ; les véhicules autonomes ont capté 50 % des investissements en 2017.
Les États-Unis et la Chine concentrent la majeure partie des investissements dans des startups spécialisées dans l’IA
Les startups implantées aux États-Unis captent la majeure partie du capital-investissement mondial dans les startups spécialisées dans l’IA. Ce constat vaut à la fois pour le nombre d’opérations d’investissement et pour les montants investis, qui comptent pour les deux tiers de la valeur totale investie depuis 2011 (Graphique 2.1). Rien de surprenant à cela, si l’on considère que les États-Unis représentent 70 à 80 % des investissements mondiaux de capital-risque, toutes technologies confondues (Breschi, Lassébie et Menon, 2018[7]).
En Chine, l’investissement dans les startups spécialisées dans l’IA connaît un essor spectaculaire depuis 2016. À tel point que la Chine s’est hissée au deuxième rang mondial en termes de valeur du capital-investissement dans l’IA. Les entreprises chinoises ont attiré 36 % du capital-investissement mondial dans l’IA en 2017, contre seulement 3 % en 2015, la moyenne s’établissant à 21 % de 2011 à mi-2018.
L’Union européenne a attiré 8 % du capital-investissement mondial dans l’IA en 2017. Ce qui représente une forte hausse pour la région prise dans son ensemble, puisqu’elle affichait un taux de seulement 1 % en 2013. En revanche, les volumes d’investissement varient sensiblement selon les États membres. Les startups implantées au Royaume-Uni ont capté 55 % de l’investissement total observé dans l’Union européenne entre 2011 et mi-2018, suivies par les jeunes pousses allemandes (14 %) et françaises (13 %). Par conséquent, les 25 pays restants se sont partagé moins de 20 % du capital-investissement total dans l’IA reçu dans l’Union européenne (Graphique 2.3).
Les États-Unis, la Chine et l’Union européenne représentent à eux trois plus de 93 % du capital-investissement dans l’IA totalisé entre 2011 et mi-2018. Au-delà de ce peloton de tête, il convient de souligner également les taux observés en Israël (3 %) et au Canada (1.6 %).
Les opérations dans le domaine de l’IA ont augmenté jusqu’en 2017, non seulement en nombre, mais aussi en taille
Le nombre d’opérations d’investissement a augmenté à l’échelle mondiale, passant de moins de 200 à plus de 1 400 transactions au cours de la période 2011-17. Cela équivaut à un taux de croissance annuel composé de 35 % entre 2011 et le premier semestre de 2018 (Graphique 2.4). Les startups implantées aux États-Unis ont attiré une part non négligeable des opérations, qui ont bondi de 130 à environ 800 transactions sur la période 2011-17. Même constat dans l’Union européenne, où le nombre d’opérations a progressé de 30 à 350 environ pendant la période considérée.
Les startups basées en Chine ont conclu un nombre moins élevé de transactions que celles opérant aux États-Unis ou dans l’Union européenne, passant de 0 à environ 60 entre 2011 et 2017. En revanche, la valeur totale élevée des investissements réalisés en Chine signifie que la valeur moyenne de ces opérations était bien supérieure à celle observée dans l’Union européenne.
La valeur moyenne importante des investissements observés en Chine s’inscrit dans une tendance générale d’augmentation de la valeur par transaction. En 2012 et 2013, près de neuf opérations d’investissement déclarées sur dix portaient sur moins de 10 millions USD. Seule une sur dix se situait dans une fourchette allant de 10 à 100 millions USD, et aucune ne dépassait 100 millions USD. En 2017, plus de deux opérations sur dix portaient sur un montant supérieur à 10 millions USD et près de 3 % dépassaient 100 millions USD. Cette tendance s’est accentuée au premier semestre de 2018, 40 % des opérations déclarées franchissant la barre des 10 millions USD et 4.4 % celle des 100 millions USD.
En termes de valeur, les « méga-opérations » (portant sur un montant supérieur à 100 millions USD) représentaient 66 % des montants totaux investis dans des startups spécialisées dans l’IA au premier semestre de 2018. Ces chiffres reflètent le niveau de maturité croissant des technologies de l’IA, ainsi qu’une évolution des stratégies des investisseurs, qui tendent à privilégier des investissements de plus grande envergure dans un nombre réduit d’entreprises spécialisées dans l’IA – à l’image de la startup chinoise Toutiao, qui a attiré en 2017 l’investissement le plus élevé (d’une valeur de 3 milliards USD). L’entreprise a mis au point un système de recommandation de contenu fondé sur l’IA, qui s’appuie sur l’exploration de données pour proposer des informations pertinentes et personnalisées aux utilisateurs chinois d’après une analyse des réseaux sociaux.
Depuis 2016, Israël (Voyager Labs), la Suisse (Mindmaze), le Canada (LeddarTech et Element AI) et le Royaume-Uni (Oaknorth et Benevolent AI) sont autant de pays qui ont vu se conclure des opérations de 100 millions USD ou plus. Ce qui témoigne du dynamisme des activités autour de l’IA au-delà des États-Unis et de la Chine.
Les schémas d’investissement varient selon les pays et régions
Si l’on observe depuis 2011 une augmentation notable des montants totaux investis et du nombre d’opérations à l’échelle mondiale, de fortes disparités demeurent dans les schémas d’investissement selon les pays et régions.
Surtout, le profil des investissements réalisés dans des startups chinoises diffère de celui observé dans le reste du monde. Les opérations de capital-investissement dans des startups chinoises spécialisées dans l’IA, enregistrées dans la base Crunchbase, représentaient une enveloppe moyenne de 150 millions USD en 2017 et au premier semestre de 2018. À titre de comparaison, la valeur moyenne des investissements réalisés en 2017 dans les autres pays atteignait à peine un dixième de ce montant.
Trois grands schémas d’investissement se dessinent. Premièrement, en Chine, les opérations portent sur un nombre réduit de startups mais impliquent des montants élevés. Deuxièmement, les startups implantées dans l’UE attirent un nombre sans cesse croissant d’opérations de plus petite envergure. La valeur moyenne par opération est passée de 3.2 millions USD en 2016 à 5.5 millions USD en 2017, puis 8.5 millions USD au premier semestre de 2018. Troisièmement, les États-Unis se caractérisent par un nombre sans cesse croissant d’investissements de plus grande envergure. La valeur moyenne par opération y est passée de 9.5 millions USD en 2016 à 13.2 millions USD en 2017, pour atteindre 32 millions USD au premier semestre de 2018. Ces différentes tendances restent notables même si l’on exclut de l’échantillon les opérations d’une valeur supérieure à 100 millions USD (Tableau 2.1 et Tableau 2.2).
Autre constat, ces schémas d’investissement, loin de se limiter aux startups spécialisées dans l’IA, valent également pour les autres secteurs. En 2017, les startups chinoises, tous secteurs confondus, ont levé en moyenne 200 millions USD par cycle d’investissement. Dans le même temps, celles implantées aux États-Unis et dans l’Union européenne ont levé en moyenne respectivement 22 millions USD et 10 millions USD.
Tableau 2.1. Montants moyens levés par opération d’investissement, pour les opérations d’une valeur allant jusqu’à 100 millions USD
En millions USD
|
Canada |
Chine |
UE |
Israël |
Japon |
États-Unis |
---|---|---|---|---|---|---|
2015 |
2 |
12 |
2 |
4 |
4 |
6 |
2016 |
4 |
20 |
3 |
6 |
5 |
6 |
2017 |
2 |
26 |
4 |
12 |
14 |
8 |
Source : Estimations de l’OCDE d’après Crunchbase (avril 2018), www.crunchbase.com.
Tableau 2.2. Montants moyens levés par opération d’investissement, pour l’ensemble des opérations réalisées dans le domaine de l’IA
En millions USD
|
Canada |
Chine |
UE |
Israël |
Japon |
États-Unis |
---|---|---|---|---|---|---|
2015 |
2 |
12 |
3 |
4 |
4 |
8 |
2016 |
4 |
73 |
3 |
6 |
5 |
10 |
2017 |
8 |
147 |
6 |
12 |
14 |
14 |
Source : Estimations de l’OCDE d’après Crunchbase (avril 2018), www.crunchbase.com.
Les startups spécialisées dans les véhicules autonomes attirent d’importants investissements
Les volumes de capital-investissement dans l’IA varient considérablement selon les domaines d’application. Les véhicules autonomes attirent une part croissante du capital-investissement dans les startups spécialisées dans l’IA. Jusqu’en 2015, ils captaient moins de 5 % des investissements totaux dans des startups de ce type. En 2017, leur part était passée à 23 %, pour atteindre 30 % mi-2018. La majeure partie des investissements de capital-risque dans les startups spécialisées dans les véhicules autonomes ont été destinés à des entreprises implantées aux États-Unis (80 % entre 2017 et mi-2018). Suivaient les startups basées en Chine (15 %), en Israël (3 %) et dans l’Union européenne (2 %). La progression s’explique par une hausse notable des montants par opération d’investissement, le nombre réel d’opérations étant resté relativement stable (87 en 2016 et 95 en 2017). Aux États-Unis, le montant moyen par opération d’investissement dans le secteur des véhicules autonomes a été multiplié par dix, passant de 20 millions USD à près de 200 millions USD entre 2016 et le premier semestre de 2018. Cette progression est essentiellement due à l’investissement de 3.35 milliards USD de Softbank dans Cruise Automation. Cette société, division du groupe General Motors spécialisée dans les véhicules autonomes, développe des systèmes de conduite automatisée pour des véhicules existants. En 2017, Ford a, pour sa part, investi 1 milliard USD dans la startup de véhicules autonomes Argo AI.
Tendances plus larges en matière de développement et de diffusion de l’IA
Les efforts déployés actuellement pour définir des mesures empiriques de l’IA se heurtent à un certain nombre de problématiques, notamment à l’absence de définitions claires. Or celles-ci constituent une condition indispensable pour compiler des mesures fiables et comparables. Des travaux expérimentaux menés conjointement par l’OCDE et l’Institut Max Planck (MPI) pour l’innovation et la concurrence ont débouché sur l’élaboration d’une approche axée sur trois volets en vue de mesurer i) les évolutions de l’IA dans la science, en se fondant sur les publications scientifiques ; ii) les évolutions technologiques de l’IA, en s’appuyant sur une mesure indirecte : les brevets ; et iii) les évolutions dans le domaine des logiciels d’IA, en particulier des logiciels libres. Cette approche implique de faire appel aux conseils d’experts pour identifier les ressources (publications, brevets et logiciels) explicitement liées à l’IA. Celles-ci sont ensuite utilisées comme référence pour évaluer le degré de corrélation à l’IA d’autres ressources (Baruffaldi et al., à paraître[8]).
Les publications scientifiques servent depuis longtemps à la mesure indirecte des résultats des efforts de recherche et des progrès de la science. L’OCDE utilise des données bibliométriques issues de Scopus, grande base de données de citations et de résumés provenant de la documentation examinée par les pairs (notamment des actes de conférences). Ces derniers constituent une ressource particulièrement utile dans le cas des domaines émergents comme l’IA. De fait, ils donnent un aperçu immédiat des nouveautés présentées dans les actes de conférences examinés par les pairs, avant publication des travaux. L’établissement d’une liste de mots-clés liés à l’IA et leur validation avec des experts en IA permettent de repérer les ressources ayant trait à l’IA dans n’importe quel domaine scientifique.
L’approche fondée sur les brevets, mise au point par l’OCDE et la branche du MPI travaillant sur les brevets, vise à identifier et cartographier les inventions liées à l’IA et d’autres évolutions technologiques intégrant des composantes d’IA, quel que soit le domaine technologique. Elle s’appuie pour ce faire sur diverses méthodes en vue de recenser les inventions, notamment des recherches par mots-clés dans les résumés ou les demandes de brevets ; l’analyse des portefeuilles de brevets des startups spécialisées dans l’IA ; et l’analyse des brevets citant des ressources scientifiques liées à l’IA. Cette approche a été affinée à la lumière de travaux menés sous l’égide du Groupe de réflexion sur les statistiques de propriété intellectuelle, piloté par l’OCDE1.
Les données issues de GitHub, la plus grande plateforme d’hébergement de logiciels à code source libre, sont utilisées afin de repérer les évolutions en matière d’IA. Les codes afférents à l’IA sont classés sous différents thèmes grâce à une analyse par modélisation thématique faisant apparaître les grands domaines de l’IA. Les domaines génériques couvrent l’apprentissage automatique (y compris l’apprentissage profond), les statistiques, les mathématiques et les méthodes computationnelles. Les domaines et applications spécifiques comprennent l’exploration de texte, la reconnaissance d’image ou la biologie.
Références
[1] Agrawal, A., J. Gans et A. Goldfarb (2018), Prediction Machines: The Simple Economics of Artificial Intelligence, Harvard Business School Press.
[8] Baruffaldi, S. et al. (à paraître), « Identifying and measuring developments in artificial intelligence », OECD Science, Technology and Industry Working Papers, Éditions OCDE, Paris.
[7] Breschi, S., J. Lassébie et C. Menon (2018), « A portrait of innovative start-ups across countries », OECD Science, Technology and Industry Working Papers, n° 2018/2, Éditions OCDE, Paris, https://dx.doi.org/10.1787/f9ff02f4-en.
[2] Bresnahan, T. et M. Trajtenberg (1992), « General purpose technologies: « Engines of growth? » », document de travail, n° 4148, National Bureau of Economic Research, Cambridge, MA, http://dx.doi.org/10.3386/w4148.
[3] Brynjolfsson, E., D. Rock et T. Syverson (2017), « Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics », National Bureau of Economic Research, vol. 24001, http://dx.doi.org/10.3386/w24001.
[6] CBI (2018), The Race For AI: Google, Intel, Apple In A Rush To Grab Artificial Intelligence Startups, CBI Insights, 27 février 2018, https://www.cbinsights.com/research/top-acquirers-ai-startups-ma-timeline/.
[5] Dilda, V. (2017), AI: Perspectives and Opportunities, exposé présenté à la conférence AI: Intelligent Machines, Smart Policies, Paris, les 26 et 27 octobre 2017, http://www.oecd.org/going-digital/ai-intelligent-machines-smart-policies/conference-agenda/ai-intelligent-machines-smart-policies-dilda.pdf.
[4] MGI (2017), Artificial intelligence: The next digital frontier?, McKinsey Global Institute, juin 2017.
Note
← 1. Ces travaux ont bénéficié des conseils d’experts et d’examinateurs de brevets des offices de propriété intellectuelle de l’Australie et du Canada, de l’Office européen des brevets, de l’Office israélien des brevets, de l’office italien des brevets et des marques, de l’Institut national de la propriété industrielle du Chili, de l’Office britannique de la propriété intellectuelle et de l’Office américain des brevets.